BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36646245)

  • 1. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections.
    Talat A; Khan AU
    Drug Discov Today; 2023 Apr; 28(4):103491. PubMed ID: 36646245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of artificial intelligence in the battle against antimicrobial-resistant bacteria.
    Lau HJ; Lim CH; Foo SC; Tan HS
    Curr Genet; 2021 Jun; 67(3):421-429. PubMed ID: 33585980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases.
    Bess A; Berglind F; Mukhopadhyay S; Brylinski M; Griggs N; Cho T; Galliano C; Wasan KM
    Drug Discov Today; 2022 Apr; 27(4):1099-1107. PubMed ID: 34748992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating antibiotic discovery through artificial intelligence.
    Melo MCR; Maasch JRMA; de la Fuente-Nunez C
    Commun Biol; 2021 Sep; 4(1):1050. PubMed ID: 34504303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibiotic discovery in the artificial intelligence era.
    Lluka T; Stokes JM
    Ann N Y Acad Sci; 2023 Jan; 1519(1):74-93. PubMed ID: 36447334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial learning systems: an implementation blueprint for artificial intelligence to tackle antimicrobial resistance.
    Howard A; Aston S; Gerada A; Reza N; Bincalar J; Mwandumba H; Butterworth T; Hope W; Buchan I
    Lancet Digit Health; 2024 Jan; 6(1):e79-e86. PubMed ID: 38123255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial resistance crisis: could artificial intelligence be the solution?
    Liu GY; Yu D; Fan MM; Zhang X; Jin ZY; Tang C; Liu XF
    Mil Med Res; 2024 Jan; 11(1):7. PubMed ID: 38254241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergizing Nanomaterials and Artificial Intelligence in Advanced Optical Biosensors for Precision Antimicrobial Resistance Diagnosis.
    Taha BA; Ahmed NM; Talreja RK; Haider AJ; Al Mashhadany Y; Al-Jubouri Q; Huddin AB; Mokhtar MHH; Rustagi S; Kaushik A; Chaudhary V; Arsad N
    ACS Synth Biol; 2024 Jun; 13(6):1600-1620. PubMed ID: 38842483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Antimicrobial Peptides as Antimicrobial and Antibiofilm Agents in Tackling the Silent Pandemic of Antimicrobial Resistance.
    Lopes BS; Hanafiah A; Nachimuthu R; Muthupandian S; Md Nesran ZN; Patil S
    Molecules; 2022 May; 27(9):. PubMed ID: 35566343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antimicrobial peptides: An alternative to traditional antibiotics.
    Ji S; An F; Zhang T; Lou M; Guo J; Liu K; Zhu Y; Wu J; Wu R
    Eur J Med Chem; 2024 Feb; 265():116072. PubMed ID: 38147812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies in Translating the Therapeutic Potentials of Host Defense Peptides.
    Ting DSJ; Beuerman RW; Dua HS; Lakshminarayanan R; Mohammed I
    Front Immunol; 2020; 11():983. PubMed ID: 32528474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Resistance in the COVID-19 Landscape: Is There an Opportunity for Anti-Infective Antibodies and Antimicrobial Peptides?
    Pérez de la Lastra JM; Anand U; González-Acosta S; López MR; Dey A; Bontempi E; Morales delaNuez A
    Front Immunol; 2022; 13():921483. PubMed ID: 35720330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advancing health care via artificial intelligence: From concept to clinic.
    Sandeep Ganesh G; Kolusu AS; Prasad K; Samudrala PK; Nemmani KVS
    Eur J Pharmacol; 2022 Nov; 934():175320. PubMed ID: 36220360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning in the rational design of antimicrobial peptides.
    Rondón-Villarreal P; Sierra DA; Torres R
    Curr Comput Aided Drug Des; 2014; 10(3):183-90. PubMed ID: 25756666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases.
    He S; Leanse LG; Feng Y
    Adv Drug Deliv Rev; 2021 Nov; 178():113922. PubMed ID: 34461198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel approaches for the treatment of infections due to multidrug-resistant bacterial pathogens.
    Imran M; Ahmad MN; Dasgupta A; Rana P; Srinivas N; Chopra S
    Future Med Chem; 2022 Aug; 14(15):1133-1148. PubMed ID: 35861021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A narrative review on drug development for the management of antimicrobial- resistant infection crisis in Japan: the past, present, and future.
    Ohashi T; Nagashima M; Kawai N; Ohmagari N; Tateda K
    Expert Rev Anti Infect Ther; 2022 Dec; 20(12):1603-1614. PubMed ID: 36368311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using chronobiology-based second-generation artificial intelligence digital system for overcoming antimicrobial drug resistance in chronic infections.
    Kolben Y; Azmanov H; Gelman R; Dror D; Ilan Y
    Ann Med; 2023 Dec; 55(1):311-318. PubMed ID: 36594558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research.
    Anahtar MN; Yang JH; Kanjilal S
    J Clin Microbiol; 2021 Jun; 59(7):e0126020. PubMed ID: 33536291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery.
    Pasrija P; Jha P; Upadhyaya P; Khan MS; Chopra M
    Curr Top Med Chem; 2022; 22(20):1692-1727. PubMed ID: 35786336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.