These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
404 related articles for article (PubMed ID: 36646419)
1. Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells? Rodriguez-Jimenez FJ; Ureña-Peralta J; Jendelova P; Erceg S J Adv Res; 2023 Dec; 54():105-118. PubMed ID: 36646419 [TBL] [Abstract][Full Text] [Related]
2. Human Pluripotent Stem Cell-Derived Neural Cells as a Relevant Platform for Drug Screening in Alzheimer's Disease. Garcia-Leon JA; Caceres-Palomo L; Sanchez-Mejias E; Mejias-Ortega M; Nuñez-Diaz C; Fernandez-Valenzuela JJ; Sanchez-Varo R; Davila JC; Vitorica J; Gutierrez A Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962164 [TBL] [Abstract][Full Text] [Related]
3. Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Raman S; Brookhouser N; Brafman DA Neurobiol Dis; 2020 May; 138():104788. PubMed ID: 32032733 [TBL] [Abstract][Full Text] [Related]
4. Modeling amyloid beta and tau pathology in human cerebral organoids. Gonzalez C; Armijo E; Bravo-Alegria J; Becerra-Calixto A; Mays CE; Soto C Mol Psychiatry; 2018 Dec; 23(12):2363-2374. PubMed ID: 30171212 [TBL] [Abstract][Full Text] [Related]
5. Alzheimer's disease-related amyloid-β induces synaptotoxicity in human iPS cell-derived neurons. Nieweg K; Andreyeva A; van Stegen B; Tanriöver G; Gottmann K Cell Death Dis; 2015 Apr; 6(4):e1709. PubMed ID: 25837485 [TBL] [Abstract][Full Text] [Related]
6. The Breakthroughs and Caveats of Using Human Pluripotent Stem Cells in Modeling Alzheimer's Disease. Sahlgren Bendtsen KM; Hall VJ Cells; 2023 Jan; 12(3):. PubMed ID: 36766763 [TBL] [Abstract][Full Text] [Related]
7. Synaptic Mitochondria: An Early Target of Amyloid-β and Tau in Alzheimer's Disease. Torres AK; Jara C; Park-Kang HS; Polanco CM; Tapia D; Alarcón F; de la Peña A; Llanquinao J; Vargas-Mardones G; Indo JA; Inestrosa NC; Tapia-Rojas C J Alzheimers Dis; 2021; 84(4):1391-1414. PubMed ID: 34719499 [TBL] [Abstract][Full Text] [Related]
8. A three-dimensional human neural cell culture model of Alzheimer's disease. Choi SH; Kim YH; Hebisch M; Sliwinski C; Lee S; D'Avanzo C; Chen H; Hooli B; Asselin C; Muffat J; Klee JB; Zhang C; Wainger BJ; Peitz M; Kovacs DM; Woolf CJ; Wagner SL; Tanzi RE; Kim DY Nature; 2014 Nov; 515(7526):274-8. PubMed ID: 25307057 [TBL] [Abstract][Full Text] [Related]
9. Cell-type Dependent Alzheimer's Disease Phenotypes: Probing the Biology of Selective Neuronal Vulnerability. Muratore CR; Zhou C; Liao M; Fernandez MA; Taylor WM; Lagomarsino VN; Pearse RV; Rice HC; Negri JM; He A; Srikanth P; Callahan DG; Shin T; Zhou M; Bennett DA; Noggle S; Love JC; Selkoe DJ; Young-Pearse TL Stem Cell Reports; 2017 Dec; 9(6):1868-1884. PubMed ID: 29153990 [TBL] [Abstract][Full Text] [Related]
10. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Essayan-Perez S; Zhou B; Nabet AM; Wernig M; Huang YA Neurobiol Dis; 2019 Oct; 130():104503. PubMed ID: 31202913 [TBL] [Abstract][Full Text] [Related]
11. Modeling Sporadic Alzheimer's Disease in Human Brain Organoids under Serum Exposure. Chen X; Sun G; Tian E; Zhang M; Davtyan H; Beach TG; Reiman EM; Blurton-Jones M; Holtzman DM; Shi Y Adv Sci (Weinh); 2021 Sep; 8(18):e2101462. PubMed ID: 34337898 [TBL] [Abstract][Full Text] [Related]