BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36646426)

  • 1. Constructing recombinant Saccharomyces cerevisiae strains for malic-to-fumaric acid conversion.
    Steyn A; Viljoen-Bloom M; Van Zyl WH
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36646426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid.
    Peleg Y; Rokem JS; Goldberg I; Pines O
    Appl Environ Microbiol; 1990 Sep; 56(9):2777-83. PubMed ID: 2275532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase.
    Pines O; Even-Ram S; Elnathan N; Battat E; Aharonov O; Gibson D; Goldberg I
    Appl Microbiol Biotechnol; 1996 Nov; 46(4):393-9. PubMed ID: 8987728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of L-malic acid by permeabilized cells of commercial Saccharomyces sp. strains.
    Presecki AV; Vasić-Racki D
    Biotechnol Lett; 2005 Dec; 27(23-24):1835-9. PubMed ID: 16328976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of fumaric acid from L-malic acid by solvent engineering using a recombinant thermostable fumarase from Thermus thermophilus HB8.
    Liu Y; Song J; Tan T; Liu L
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2823-31. PubMed ID: 25561060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial fumarase and L-malic acid are evolutionary ancient components of the DNA damage response.
    Singer E; Silas YB; Ben-Yehuda S; Pines O
    Elife; 2017 Nov; 6():. PubMed ID: 29140245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering pathways for malate degradation in Saccharomyces cerevisiae.
    Volschenk H; Viljoen M; Grobler J; Petzold B; Bauer F; Subden RE; Young RA; Lonvaud A; Denayrolles M; van Vuuren HJ
    Nat Biotechnol; 1997 Mar; 15(3):253-7. PubMed ID: 9062925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts.
    Wang X; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1998; 70-72():845-52. PubMed ID: 9627400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of L-malic acid by yeasts of the genus Dipodascus.
    Rosenberg M; Miková H; Kristofíková L
    Lett Appl Microbiol; 1999 Oct; 29(4):221-3. PubMed ID: 10583747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conversion of fumaric acid to L-malic by sol-gel immobilized Saccharomyces cerevisiae in a supported liquid membrane bioreactor.
    Bressler E; Pines O; Goldberg I; Braun S
    Biotechnol Prog; 2002; 18(3):445-50. PubMed ID: 12052057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional expression of FumA in
    Zhang C; Shi M; Xu Y; Yang D; Lu L; Xue F; Xu Q
    Appl Environ Microbiol; 2024 Apr; 90(4):e0000824. PubMed ID: 38506527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae.
    Camarasa C; Bidard F; Bony M; Barre P; Dequin S
    Appl Environ Microbiol; 2001 Sep; 67(9):4144-51. PubMed ID: 11526017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae.
    Volschenk H; Viljoen-Bloom M; Subden RE; van Vuuren HJ
    Yeast; 2001 Jul; 18(10):963-70. PubMed ID: 11447602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
    Pines O; Shemesh S; Battat E; Goldberg I
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):248-55. PubMed ID: 9299784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.
    Shah MV; van Mastrigt O; Heijnen JJ; van Gulik WM
    Yeast; 2016 Apr; 33(4):145-61. PubMed ID: 26683700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-malic acid production from xylose by engineered Saccharomyces cerevisiae.
    Kang NK; Lee JW; Ort DR; Jin YS
    Biotechnol J; 2022 Mar; 17(3):e2000431. PubMed ID: 34390209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-malic acid production using immobilized Saccharomyces cerevisiae.
    Figueiredo ZM; Carvalho Júnior LB
    Appl Biochem Biotechnol; 1991 Aug; 30(2):217-24. PubMed ID: 1952933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on the optimal conditions in simultaneous reaction and separation for L-malic acid production].
    Hu YH; Ouyang PK; Shen SB; Chen WL
    Sheng Wu Gong Cheng Xue Bao; 2001 Sep; 17(5):503-5. PubMed ID: 11797209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fumaric acid overproduction in yeast mutants deficient in fumarase.
    Kaclíková E; Lachowicz TM; Gbelská Y; Subík J
    FEMS Microbiol Lett; 1992 Mar; 70(2):101-6. PubMed ID: 1587456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient neutralizer-free l-malic acid production using engineered Saccharomyces cerevisiae.
    Sun L; Zhang Q; Kong X; Liu Y; Li J; Du G; Lv X; Ledesma-Amaro R; Chen J; Liu L
    Bioresour Technol; 2023 Feb; 370():128580. PubMed ID: 36608859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.