BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36646956)

  • 1. Modeling the expansion of virtual screening libraries.
    Lyu J; Irwin JJ; Shoichet BK
    Nat Chem Biol; 2023 Jun; 19(6):712-718. PubMed ID: 36646956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HIt Discovery using docking ENriched by GEnerative Modeling (HIDDEN GEM): A novel computational workflow for accelerated virtual screening of ultra-large chemical libraries.
    Popov KI; Wellnitz J; Maxfield T; Tropsha A
    Mol Inform; 2024 Jan; 43(1):e202300207. PubMed ID: 37802967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds.
    Sadybekov AA; Sadybekov AV; Liu Y; Iliopoulos-Tsoutsouvas C; Huang XP; Pickett J; Houser B; Patel N; Tran NK; Tong F; Zvonok N; Jain MK; Savych O; Radchenko DS; Nikas SP; Petasis NA; Moroz YS; Roth BL; Makriyannis A; Katritch V
    Nature; 2022 Jan; 601(7893):452-459. PubMed ID: 34912117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
    Gentile F; Yaacoub JC; Gleave J; Fernandez M; Ton AT; Ban F; Stern A; Cherkasov A
    Nat Protoc; 2022 Mar; 17(3):672-697. PubMed ID: 35121854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in the discovery of new chemotypes through ultra-large library docking.
    Potlitz F; Link A; Schulig L
    Expert Opin Drug Discov; 2023 Mar; 18(3):303-313. PubMed ID: 36714919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries.
    Sivula T; Yetukuri L; Kalliokoski T; Käsnänen H; Poso A; Pöhner I
    J Chem Inf Model; 2023 Sep; 63(18):5773-5783. PubMed ID: 37655823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surrogate docking: structure-based virtual screening at high throughput speed.
    Yoon S; Smellie A; Hartsough D; Filikov A
    J Comput Aided Mol Des; 2005 Jul; 19(7):483-97. PubMed ID: 16292613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZINC-22─A Free Multi-Billion-Scale Database of Tangible Compounds for Ligand Discovery.
    Tingle BI; Tang KG; Castanon M; Gutierrez JJ; Khurelbaatar M; Dandarchuluun C; Moroz YS; Irwin JJ
    J Chem Inf Model; 2023 Feb; 63(4):1166-1176. PubMed ID: 36790087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules.
    Ochoa R; Palacio-Rodriguez K; Clemente CM; Adler NS
    J Mol Graph Model; 2021 Dec; 109():108023. PubMed ID: 34555725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning with Geometry-Enhanced Molecular Representation for Augmentation of Large-Scale Docking-Based Virtual Screening.
    Yu L; He X; Fang X; Liu L; Liu J
    J Chem Inf Model; 2023 Nov; 63(21):6501-6514. PubMed ID: 37882338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection.
    Clyde A; Liu X; Brettin T; Yoo H; Partin A; Babuji Y; Blaiszik B; Mohd-Yusof J; Merzky A; Turilli M; Jha S; Ramanathan A; Stevens R
    Sci Rep; 2023 Feb; 13(1):2105. PubMed ID: 36747041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High throughput virtual screening (HTVS) of peptide library: Technological advancement in ligand discovery.
    Tripathi NM; Bandyopadhyay A
    Eur J Med Chem; 2022 Dec; 243():114766. PubMed ID: 36122548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchical virtual screening approaches in small molecule drug discovery.
    Kumar A; Zhang KY
    Methods; 2015 Jan; 71():26-37. PubMed ID: 25072167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A reliable computational workflow for the selection of optimal screening libraries.
    Gilad Y; Nadassy K; Senderowitz H
    J Cheminform; 2015; 7():61. PubMed ID: 26692904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. vSDC: a method to improve early recognition in virtual screening when limited experimental resources are available.
    Chaput L; Martinez-Sanz J; Quiniou E; Rigolet P; Saettel N; Mouawad L
    J Cheminform; 2016; 8():1. PubMed ID: 26807156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerating high-throughput virtual screening through molecular pool-based active learning.
    Graff DE; Shakhnovich EI; Coley CW
    Chem Sci; 2021 Apr; 12(22):7866-7881. PubMed ID: 34168840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel tumor necrosis factor-α (TNF-α) inhibitors from small molecule library screening for their therapeutic activity profiles against rheumatoid arthritis using target-driven approaches and binary QSAR models.
    Zaka M; Abbasi BH; Durdagi S
    J Biomol Struct Dyn; 2019 Jun; 37(9):2464-2476. PubMed ID: 30047845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening.
    Yu Y; Cai C; Wang J; Bo Z; Zhu Z; Zheng H
    J Chem Theory Comput; 2023 Jun; 19(11):3336-3345. PubMed ID: 37125970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-large library docking for discovering new chemotypes.
    Lyu J; Wang S; Balius TE; Singh I; Levit A; Moroz YS; O'Meara MJ; Che T; Algaa E; Tolmachova K; Tolmachev AA; Shoichet BK; Roth BL; Irwin JJ
    Nature; 2019 Feb; 566(7743):224-229. PubMed ID: 30728502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.