These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36647338)

  • 21. A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.
    Kim B; Shim H; Baek J
    Med Phys; 2022 Dec; 49(12):7497-7515. PubMed ID: 35880806
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reducing windmill artifacts in clinical spiral CT using a deep learning-based projection raw data upsampling: Method and robustness evaluation.
    Magonov J; Maier J; Erath J; Sunnegårdh J; Fournié E; Stierstorfer K; Kachelrieß M
    Med Phys; 2024 Mar; 51(3):1597-1616. PubMed ID: 38227833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning based image reconstruction algorithm for limited-angle translational computed tomography.
    Wang J; Liang J; Cheng J; Guo Y; Zeng L
    PLoS One; 2020; 15(1):e0226963. PubMed ID: 31905225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep learning-based forward and cross-scatter correction in dual-source CT.
    Erath J; Vöth T; Maier J; Fournié E; Petersilka M; Stierstorfer K; Kachelrieß M
    Med Phys; 2021 Sep; 48(9):4824-4842. PubMed ID: 34309837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A deep blur learning-based motion artifact reduction algorithm for dental cone-beam computed tomography images].
    Lin Z; Wang Y; Bian Z; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2024 Jun; 44(6):1198-1208. PubMed ID: 38977351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iterative image-domain ring artifact removal in cone-beam CT.
    Liang X; Zhang Z; Niu T; Yu S; Wu S; Li Z; Zhang H; Xie Y
    Phys Med Biol; 2017 Jul; 62(13):5276-5292. PubMed ID: 28585520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unsupervised learning of a deep neural network for metal artifact correction using dual-polarity readout gradients.
    Kwon K; Kim D; Kim B; Park H
    Magn Reson Med; 2020 Jan; 83(1):124-138. PubMed ID: 31403219
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Segmentation-free empirical beam hardening correction for CT.
    Schüller S; Sawall S; Stannigel K; Hülsbusch M; Ulrici J; Hell E; Kachelrieß M
    Med Phys; 2015 Feb; 42(2):794-803. PubMed ID: 25652493
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iterative quality enhancement via residual-artifact learning networks for low-dose CT.
    Wang Y; Liao Y; Zhang Y; He J; Li S; Bian Z; Zhang H; Gao Y; Meng D; Zuo W; Zeng D; Ma J
    Phys Med Biol; 2018 Oct; 63(21):215004. PubMed ID: 30265251
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT.
    Byl A; Klein L; Sawall S; Heinze S; Schlemmer HP; Kachelrieß M
    Med Phys; 2021 Jul; 48(7):3572-3582. PubMed ID: 33973237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-dose CT denoising with a high-level feature refinement and dynamic convolution network.
    Yang S; Pu Q; Lei C; Zhang Q; Jeon S; Yang X
    Med Phys; 2023 Jun; 50(6):3597-3611. PubMed ID: 36542402
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sparsity-based method for ring artifact elimination in computed tomography.
    Selim M; Rashed EA; Atiea MA; Kudo H
    PLoS One; 2022; 17(6):e0268410. PubMed ID: 35763462
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PILN: A posterior information learning network for blind reconstruction of lung CT images.
    Chi J; Sun Z; Han X; Yu X; Wang H; Wu C
    Comput Methods Programs Biomed; 2023 Apr; 232():107449. PubMed ID: 36871547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unsupervised motion artifact correction of turbo spin-echo MRI using deep image prior.
    Lee J; Seo H; Lee W; Park H
    Magn Reson Med; 2024 Jul; 92(1):28-42. PubMed ID: 38282279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artifact suppressed dictionary learning for low-dose CT image processing.
    Chen Y; Shi L; Feng Q; Yang J; Shu H; Luo L; Coatrieux JL; Chen W
    IEEE Trans Med Imaging; 2014 Dec; 33(12):2271-92. PubMed ID: 25029378
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [An adaptive CT metal artifact reduction algorithm that combines projection interpolation and physical correction].
    Zhu Q; Wang Y; Zhu M; Tao X; Bian Z; Ma J
    Nan Fang Yi Ke Da Xue Xue Bao; 2022 Jun; 42(6):832-839. PubMed ID: 35790433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.