These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36647633)

  • 1. Early detection of lung cancer biomarkers in exhaled breath by modified armchair stanene nanoribbons.
    Mashhadbani M; Faizabadi E
    Phys Chem Chem Phys; 2023 Feb; 25(5):3875-3889. PubMed ID: 36647633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and dissociation of sulfur-based toxic gas molecules on silicene nanoribbons: a quest for high-performance gas sensors and catalysts.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Mar; 24(4):94. PubMed ID: 29549500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-orbit coupling effects on electronic structures in stanene nanoribbons.
    Xiong W; Xia C; Peng Y; Du J; Wang T; Zhang J; Jia Y
    Phys Chem Chem Phys; 2016 Mar; 18(9):6534-40. PubMed ID: 26865500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal transport characterization of stanene/silicene heterobilayer and stanene bilayer nanostructures.
    Noshin M; Khan AI; Subrina S
    Nanotechnology; 2018 May; 29(18):185706. PubMed ID: 29438099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A density functional theory study on the interaction of toluene with transition metal decorated carbon nanotubes: a promising platform for early detection of lung cancer from human breath.
    Aasi A; Aghaei SM; Panchapakesan B
    Nanotechnology; 2020 Oct; 31(41):415707. PubMed ID: 32554899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of point defects on the electronic and transport properties of silicene nanoribbons.
    Iordanidou K; Houssa M; van den Broek B; Pourtois G; Afanas'ev VV; Stesmans A
    J Phys Condens Matter; 2016 Jan; 28(3):035302. PubMed ID: 26732643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defective GaAs nanoribbon-based biosensor for lung cancer biomarkers: a DFT study.
    Tarun T; Singh P; Kaur H; Walia GK; Randhawa DKK; Choudhary BC
    J Mol Model; 2021 Aug; 27(9):270. PubMed ID: 34459994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of edge magnetization and electric fields on zigzag silicene, germanene and stanene nanoribbons.
    Hattori A; Yada K; Araidai M; Sato M; Shiraishi K; Tanaka Y
    J Phys Condens Matter; 2019 Mar; 31(10):105302. PubMed ID: 30557870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption.
    Rao YC; Zhang P; Li SF; Duan XM; Wei SH
    Phys Chem Chem Phys; 2018 May; 20(18):12916-12922. PubMed ID: 29701208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of uric acid adsorption on armchair silicene nanoribbons: a DFT study.
    Tarun T; Randhawa DKK; Singh P; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2020 Feb; 26(3):63. PubMed ID: 32108912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative differential resistance in armchair silicene nanoribbons.
    Manjanath A; Roy A; Samanta A; Singh AK
    Nanotechnology; 2017 Jul; 28(27):275402. PubMed ID: 28557802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WSe2 nanoribbons: new high-performance thermoelectric materials.
    Chen KX; Luo ZY; Mo DC; Lyu SS
    Phys Chem Chem Phys; 2016 Jun; 18(24):16337-44. PubMed ID: 27254307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Staggering transport of edge states and symmetry analysis of electronic and optical properties of stanene.
    Cai Y; Zhang G; Zhang YW
    Nanoscale; 2020 Oct; 12(40):20890-20897. PubMed ID: 33048096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights into NO adsorption on alkali metal and transition metal doped graphene nanoribbon surface: A DFT approach.
    R D; Verma A; Choudhary BC; Sharma RK
    J Mol Graph Model; 2022 Mar; 111():108109. PubMed ID: 34952481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First principles investigation on armchair zinc oxide nanoribbons as uric acid sensors.
    Singh P; Randhawa DKK; Tarun ; Choudhary BC; Walia GK; Kaur N
    J Mol Model; 2019 Dec; 26(1):4. PubMed ID: 31834483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density-functional study of hydrogen cyanide adsorption on silicene nanoribbons.
    Walia GK; Randhawa DKK
    J Mol Model; 2018 Aug; 24(9):242. PubMed ID: 30121785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of nitrogen doping of carbon nanoribbons: edge effects.
    Jiang J; Turnbull J; Lu W; Boguslawski P; Bernholc J
    J Chem Phys; 2012 Jan; 136(1):014702. PubMed ID: 22239795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.