These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 36647731)
1. Biohydrogenation of 1,3-Butadiene to 1-Butene under Acetogenic Conditions by Yang Y; Jin H; Li X; Yan J Environ Sci Technol; 2023 Jan; 57(4):1637-1645. PubMed ID: 36647731 [TBL] [Abstract][Full Text] [Related]
2. Anaerobic Biohydrogenation of Isoprene by Acetobacterium wieringae Strain Y. Jin H; Li X; Wang H; Cápiro NL; Li X; Löffler FE; Yan J; Yang Y mBio; 2022 Dec; 13(6):e0208622. PubMed ID: 36342171 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a Putative Isoprene Reductase in Acetobacterium wieringae. Kronen M; Vázquez-Campos X; Wilkins MR; Lee M; Manefield MJ mSystems; 2023 Apr; 8(2):e0011923. PubMed ID: 36943133 [TBL] [Abstract][Full Text] [Related]
4. Enrichment of Anaerobic Syngas-Converting Communities and Isolation of a Novel Carboxydotrophic Arantes AL; Moreira JPC; Diender M; Parshina SN; Stams AJM; Alves MM; Alves JI; Sousa DZ Front Microbiol; 2020; 11():58. PubMed ID: 32082285 [TBL] [Abstract][Full Text] [Related]
5. Developing a genetic engineering method for Acetobacterium wieringae to expand one-carbon valorization pathways. Moreira JPC; Heap JT; Alves JI; Domingues L Biotechnol Biofuels Bioprod; 2023 Feb; 16(1):24. PubMed ID: 36788587 [TBL] [Abstract][Full Text] [Related]
6. Propionate Production from Carbon Monoxide by Synthetic Cocultures of Acetobacterium wieringae and Propionigenic Bacteria. Moreira JPC; Diender M; Arantes AL; Boeren S; Stams AJM; Alves MM; Alves JI; Sousa DZ Appl Environ Microbiol; 2021 Jun; 87(14):e0283920. PubMed ID: 33990298 [TBL] [Abstract][Full Text] [Related]
7. Growth-substrate dependent dechlorination of 1,2-dichloroethane by a homoacetogenic bacterium. De Wildeman S; Neumann A; Diekert G; Verstraete W Biodegradation; 2003 Aug; 14(4):241-7. PubMed ID: 12948054 [TBL] [Abstract][Full Text] [Related]
8. Isolation of Acetobacterium sp. strain AG, which reductively debrominates octa- and pentabrominated diphenyl ether technical mixtures. Ding C; Chow WL; He J Appl Environ Microbiol; 2013 Feb; 79(4):1110-7. PubMed ID: 23204415 [TBL] [Abstract][Full Text] [Related]
9. Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation. Groher A; Weuster-Botz D J Biotechnol; 2016 Jun; 228():82-94. PubMed ID: 27107467 [TBL] [Abstract][Full Text] [Related]
10. Defining Genomic and Predicted Metabolic Features of the Ross DE; Marshall CW; Gulliver D; May HD; Norman RS mSystems; 2020 Sep; 5(5):. PubMed ID: 32934112 [TBL] [Abstract][Full Text] [Related]
11. Formate metabolism in the acetogenic bacterium Acetobacterium woodii. Moon J; Dönig J; Kramer S; Poehlein A; Daniel R; Müller V Environ Microbiol; 2021 Aug; 23(8):4214-4227. PubMed ID: 33989450 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Adrian NR; Arnett CM Curr Microbiol; 2004 May; 48(5):332-40. PubMed ID: 15060728 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the psychrotolerant acetogen strain SyrA5 and the emended description of the species Acetobacterium carbinolicum. Paarup M; Friedrich MW; Tindall BJ; Finster K Antonie Van Leeuwenhoek; 2006 Jan; 89(1):55-69. PubMed ID: 16344912 [TBL] [Abstract][Full Text] [Related]
14. Glycine betaine metabolism in the acetogenic bacterium Acetobacterium woodii. Lechtenfeld M; Heine J; Sameith J; Kremp F; Müller V Environ Microbiol; 2018 Dec; 20(12):4512-4525. PubMed ID: 30136352 [TBL] [Abstract][Full Text] [Related]
15. Genome Sequence of the Acetogenic Bacterium Acetobacterium wieringae DSM 1911T. Poehlein A; Bengelsdorf FR; Schiel-Bengelsdorf B; Daniel R; Dürre P Genome Announc; 2016 Dec; 4(6):. PubMed ID: 28007862 [TBL] [Abstract][Full Text] [Related]
16. Reductive biodegradation of 1,2-dichloroethane by methanogenic granular sludge: perspectives for in situ remediation. De Wildeman S; Nollet H; Van Langenhove H; Diekert G; Verstraete W Water Sci Technol; 2002; 45(10):43-8. PubMed ID: 12188575 [TBL] [Abstract][Full Text] [Related]
17. New Horizons in Acetogenic Conversion of One-Carbon Substrates and Biological Hydrogen Storage. Müller V Trends Biotechnol; 2019 Dec; 37(12):1344-1354. PubMed ID: 31257058 [TBL] [Abstract][Full Text] [Related]
18. Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii. Moon J; Müller V Environ Microbiol; 2021 Nov; 23(11):6953-6964. PubMed ID: 34448343 [TBL] [Abstract][Full Text] [Related]
19. Comparative Study of Pd-Ni Bimetallic Catalysts Supported on UiO-66 and UiO-66-NH Liu L; Yu L; Zhou X; Xin C; Sun S; Liu Z; Zhang J; Liu Y; Tai X Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564194 [TBL] [Abstract][Full Text] [Related]
20. An Acetobacterium strain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism as Sporomusa sphaeroides. Philips J; Monballyu E; Georg S; De Paepe K; Prévoteau A; Rabaey K; Arends JBA FEMS Microbiol Ecol; 2019 Feb; 95(2):. PubMed ID: 30445447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]