These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36647782)

  • 1. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy.
    Fabozzi A; Della Sala F; di Gennaro M; Barretta M; Longobardo G; Solimando N; Pagliuca M; Borzacchiello A
    Lab Chip; 2023 Mar; 23(5):1389-1409. PubMed ID: 36647782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems.
    Streck S; Hong L; Boyd BJ; McDowell A
    Pharm Nanotechnol; 2019; 7(6):423-443. PubMed ID: 31629401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of nanoparticle drug delivery systems with microfluidics tools.
    Khan IU; Serra CA; Anton N; Vandamme TF
    Expert Opin Drug Deliv; 2015 Apr; 12(4):547-62. PubMed ID: 25345543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidics in drug delivery: review of methods and applications.
    Rawas-Qalaji M; Cagliani R; Al-Hashimi N; Al-Dabbagh R; Al-Dabbagh A; Hussain Z
    Pharm Dev Technol; 2023 Jan; 28(1):61-77. PubMed ID: 36592376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic formulation of nanoparticles for biomedical applications.
    Shepherd SJ; Issadore D; Mitchell MJ
    Biomaterials; 2021 Jul; 274():120826. PubMed ID: 33965797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-Based Holonomic Constraints of siRNA in the Kernel of Lipid/Polymer Hybrid Nanoassemblies for Improving Stable and Safe In Vivo Delivery.
    Wei W; Sun J; Guo XY; Chen X; Wang R; Qiu C; Zhang HT; Pang WH; Wang JC; Zhang Q
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14839-14854. PubMed ID: 32182035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel microfluidic synthesis of size-tunable polymeric nanoparticles using 3D flow focusing towards in vivo study.
    Lim JM; Bertrand N; Valencia PM; Rhee M; Langer R; Jon S; Farokhzad OC; Karnik R
    Nanomedicine; 2014 Feb; 10(2):401-9. PubMed ID: 23969105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Nanoparticles for Drug Delivery.
    Liu Y; Yang G; Hui Y; Ranaweera S; Zhao CX
    Small; 2022 Sep; 18(36):e2106580. PubMed ID: 35396770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.
    Martins JP; Torrieri G; Santos HA
    Expert Opin Drug Deliv; 2018 May; 15(5):469-479. PubMed ID: 29508630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening strategies for surface modification of lipid-polymer hybrid nanoparticles.
    Rouco H; García-García P; Évora C; Díaz-Rodríguez P; Delgado A
    Int J Pharm; 2022 Aug; 624():121973. PubMed ID: 35811041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening.
    Ahn J; Ko J; Lee S; Yu J; Kim Y; Jeon NL
    Adv Drug Deliv Rev; 2018 Mar; 128():29-53. PubMed ID: 29626551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology.
    Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L
    PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass production and size control of lipid-polymer hybrid nanoparticles through controlled microvortices.
    Kim Y; Lee Chung B; Ma M; Mulder WJ; Fayad ZA; Farokhzad OC; Langer R
    Nano Lett; 2012 Jul; 12(7):3587-91. PubMed ID: 22716029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic technologies for nanoparticle formation.
    Tian F; Cai L; Liu C; Sun J
    Lab Chip; 2022 Feb; 22(3):512-529. PubMed ID: 35048096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles containing insoluble drug for cancer therapy.
    Guo S; Huang L
    Biotechnol Adv; 2014; 32(4):778-88. PubMed ID: 24113214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine.
    Ejeta F
    Drug Des Devel Ther; 2021; 15():3881-3891. PubMed ID: 34531650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances in microfluidics for lipid nanoparticles and extracellular vesicles and applications in drug delivery systems.
    Maeki M; Kimura N; Sato Y; Harashima H; Tokeshi M
    Adv Drug Deliv Rev; 2018 Mar; 128():84-100. PubMed ID: 29567396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic synthesis of multilayered lipid-polymer hybrid nanoparticles for the formulation of low solubility drugs.
    Kambar N; Leal C
    Soft Matter; 2023 Feb; 19(8):1596-1605. PubMed ID: 36752169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidics for producing poly (lactic-co-glycolic acid)-based pharmaceutical nanoparticles.
    Li X; Jiang X
    Adv Drug Deliv Rev; 2018 Mar; 128():101-114. PubMed ID: 29277543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaping the future of nanomedicine: anisotropy in polymeric nanoparticle design.
    Meyer RA; Green JJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2016; 8(2):191-207. PubMed ID: 25981390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.