These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36648094)

  • 1. A DFT study of plasma-catalytic ammonia synthesis: the effect of electric fields, excess electrons and catalyst surfaces on N
    Chen S; Wang Y; Li Q; Li K; Li M; Wang F
    Phys Chem Chem Phys; 2023 Feb; 25(5):3920-3929. PubMed ID: 36648094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic understanding of N
    Reyes YIA; Yang KS; Thang HV; Coluccini C; Chen SY; Chen HT
    Faraday Discuss; 2023 Jul; 243(0):148-163. PubMed ID: 37057657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the effect of surface charging on plasma synthesis of ammonia using DFT.
    Lele AD; Xu Y; Ju Y
    Phys Chem Chem Phys; 2024 Mar; 26(12):9453-9461. PubMed ID: 38446432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking the Linear Relation in the Dissociation of Nitrogen on Iron Surfaces.
    Liu D; Zhao W; Yuan Q
    Chemphyschem; 2022 Sep; 23(17):e202200147. PubMed ID: 35608395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study on the Role of Electric Field in Low-Temperature Plasma Catalytic Ammonia Synthesis via Integrated Density Functional Theory and Microkinetic Modeling.
    Shao K; Mesbah A
    JACS Au; 2024 Feb; 4(2):525-544. PubMed ID: 38425907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning nitrogen adsorption and activation performances of Three-Atom transition metal clusters by modulating external electric fields.
    Li Q; Chen S; Lan P; Yang G; Sun Q; Zhong L; Wang F
    J Colloid Interface Sci; 2024 Sep; 669():211-219. PubMed ID: 38713959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen and Titanium Vacancies in a BiOBr/MXene-Ti
    Fang Y; Cao Y; Tan B; Chen Q
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42624-42634. PubMed ID: 34467762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying the Contribution of Hot Electrons in Photothermal Catalysis: A Case Study of Ammonia Synthesis over Carbon-supported Ru Catalyst.
    Bian X; Zhao Y; Waterhouse GIN; Miao Y; Zhou C; Wu LZ; Zhang T
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304452. PubMed ID: 37083180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning-Assisted Investigation of Electric Field-Dipole Effects on Catalytic Ammonia Synthesis.
    Wan M; Yue H; Notarangelo J; Liu H; Che F
    JACS Au; 2022 Jun; 2(6):1338-1349. PubMed ID: 35783174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of Nitrogen Vacancies to Ammonia Synthesis over Metal Nitride Catalysts.
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Hosono H
    J Am Chem Soc; 2020 Aug; 142(33):14374-14383. PubMed ID: 32787255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DFT insight into the effect of potassium on the adsorption, activation and dissociation of CO
    Nie X; Meng L; Wang H; Chen Y; Guo X; Song C
    Phys Chem Chem Phys; 2018 May; 20(21):14694-14707. PubMed ID: 29774346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Catalysis of the Synthesis of Ammonia with Co-Based Catalysts and Plasma: From Nanoparticles to a Single Atom.
    Li X; Jiao Y; Cui Y; Dai C; Ren P; Song C; Ma X
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):52498-52507. PubMed ID: 34714629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacancy-enabled N
    Ye TN; Park SW; Lu Y; Li J; Sasase M; Kitano M; Tada T; Hosono H
    Nature; 2020 Jul; 583(7816):391-395. PubMed ID: 32669696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition.
    Fang H; Wu S; Ayvali T; Zheng J; Fellowes J; Ho PL; Leung KC; Large A; Held G; Kato R; Suenaga K; Reyes YIA; Thang HV; Chen HT; Tsang SCE
    Nat Commun; 2023 Feb; 14(1):647. PubMed ID: 36746965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature ammonia synthesis by surface protonics over metal supported catalysts.
    Sekine Y
    Faraday Discuss; 2023 Jul; 243(0):179-197. PubMed ID: 37017083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Effects of Crystal Phase and Strain for N
    Xie T; Zhou J; Cai L; Hu W; Huang B; Yuan D
    ACS Omega; 2022 Feb; 7(5):4492-4500. PubMed ID: 35155941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of CeO
    Maeda R; Sampei H; Nakayama R; Higo T; Koshizuka Y; Bando Y; Komanoya T; Nakahara Y; Sekine Y
    RSC Adv; 2024 Mar; 14(14):9869-9877. PubMed ID: 38528930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulating oxygen vacancies by Zn atom doping to anchor and disperse promoter Ba on MgO support to improve Ru-based catalysts activity for ammonia synthesis.
    Chen Y; He J; Lei H; Tu Q; Huang C; Cheng X; Yang X; Liu H; Huo C
    RSC Adv; 2024 Apr; 14(19):13157-13167. PubMed ID: 38655461
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.