These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 36648128)
21. A Slotted Decellularized Osteochondral Scaffold With Layer-Specific Release of Stem Cell Differentiation Stimulators Enhances Cartilage and Bone Regeneration in Osteochondral Defects in a Rabbit Model. Deng Z; Zhu W; Lu B; Li M; Xu D Am J Sports Med; 2022 Oct; 50(12):3390-3405. PubMed ID: 36122351 [TBL] [Abstract][Full Text] [Related]
22. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits. Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703 [TBL] [Abstract][Full Text] [Related]
23. Preparation and characterization of biomimetic gradient multi-layer cell-laden scaffolds for osteochondral integrated repair. Li M; Song P; Wang W; Xu Y; Li J; Wu L; Gui X; Zeng Z; Zhou Z; Liu M; Kong Q; Fan Y; Zhang X; Zhou C; Liu L J Mater Chem B; 2022 Jun; 10(22):4172-4188. PubMed ID: 35531933 [TBL] [Abstract][Full Text] [Related]
24. Functionally graded multilayer scaffolds for in vivo osteochondral tissue engineering. Kang H; Zeng Y; Varghese S Acta Biomater; 2018 Sep; 78():365-377. PubMed ID: 30031911 [TBL] [Abstract][Full Text] [Related]
25. Cell-mediated injectable blend hydrogel-BCP ceramic scaffold for in situ condylar osteochondral repair. Wang H; Xu Y; Wang P; Ma J; Wang P; Han X; Fan Y; Bai D; Sun Y; Zhang X Acta Biomater; 2021 Mar; 123():364-378. PubMed ID: 33453407 [TBL] [Abstract][Full Text] [Related]
27. Multifunctional polyphenol-based silk hydrogel alleviates oxidative stress and enhances endogenous regeneration of osteochondral defects. Zhang W; Zhang Y; Li X; Cao Z; Mo Q; Sheng R; Ling C; Chi J; Yao Q; Chen J; Wang H Mater Today Bio; 2022 Mar; 14():100251. PubMed ID: 35469254 [TBL] [Abstract][Full Text] [Related]
28. Bi-layered Composite Scaffold for Repair of the Osteochondral Defects. Xu D; Cheng G; Dai J; Li Z Adv Wound Care (New Rochelle); 2021 Aug; 10(8):401-414. PubMed ID: 33076773 [No Abstract] [Full Text] [Related]
29. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related]
30. A Biomimetic Biphasic Osteochondral Scaffold with Layer-Specific Release of Stem Cell Differentiation Inducers for the Reconstruction of Osteochondral Defects. Liu X; Wei Y; Xuan C; Liu L; Lai C; Chai M; Zhang Z; Wang L; Shi X Adv Healthc Mater; 2020 Dec; 9(23):e2000076. PubMed ID: 32338462 [TBL] [Abstract][Full Text] [Related]
31. A nanozyme-functionalized bilayer hydrogel scaffold for modulating the inflammatory microenvironment to promote osteochondral regeneration. Hu C; Huang R; Xia J; Hu X; Xie D; Jin Y; Qi W; Zhao C; Hu Z J Nanobiotechnology; 2024 Jul; 22(1):445. PubMed ID: 39069607 [TBL] [Abstract][Full Text] [Related]
32. Strategies for the Codelivery of Osteoclasts and Mesenchymal Stem Cells in 3D-Printable Osteochondral Scaffolds. Jabari E; Choe RH; Kuzemchak B; Venable-Croft A; Choi JY; McLoughlin S; Packer JD; Fisher JP Tissue Eng Part C Methods; 2024 Aug; 30(8):323-334. PubMed ID: 39078319 [TBL] [Abstract][Full Text] [Related]
33. Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. Wei B; Yao Q; Guo Y; Mao F; Liu S; Xu Y; Wang L J Biomater Appl; 2015 Aug; 30(2):160-70. PubMed ID: 25766036 [TBL] [Abstract][Full Text] [Related]
34. Novel 3D-printing bilayer GelMA-based hydrogel containing BP, Sun T; Feng Z; He W; Li C; Han S; Li Z; Guo R Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37857284 [TBL] [Abstract][Full Text] [Related]
35. Fabrication of nanocomposite/nanofibrous functionally graded biomimetic scaffolds for osteochondral tissue regeneration. Hejazi F; Bagheri-Khoulenjani S; Olov N; Zeini D; Solouk A; Mirzadeh H J Biomed Mater Res A; 2021 Sep; 109(9):1657-1669. PubMed ID: 33687800 [TBL] [Abstract][Full Text] [Related]
36. Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. Ding X; Zhu M; Xu B; Zhang J; Zhao Y; Ji S; Wang L; Wang L; Li X; Kong D; Ma X; Yang Q ACS Appl Mater Interfaces; 2014 Oct; 6(19):16696-705. PubMed ID: 25210952 [TBL] [Abstract][Full Text] [Related]
37. An all-silk-derived bilayer hydrogel for osteochondral tissue engineering. Jiang W; Xiang X; Song M; Shen J; Shi Z; Huang W; Liu H Mater Today Bio; 2022 Dec; 17():100485. PubMed ID: 36388458 [TBL] [Abstract][Full Text] [Related]
38. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone. Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056 [TBL] [Abstract][Full Text] [Related]
39. Photo-crosslinked integrated triphasic scaffolds with gradient composition and strength for osteochondral regeneration. Wang W; Li H; Song P; Guo Y; Luo D; Li H; Ma L J Mater Chem B; 2024 Jan; 12(5):1271-1284. PubMed ID: 38186375 [TBL] [Abstract][Full Text] [Related]
40. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing. Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]