BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 36648205)

  • 1. Aromatic Amine-Functionalized Covalent Organic Frameworks (COFs) for CO
    Dautzenberg E; Li G; de Smet LCPM
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5118-5127. PubMed ID: 36648205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porphyrinic Porous Aromatic Frameworks for Carbon Dioxide Adsorption and Separation.
    Yang J; Qiu H; Huang L; Meng S; Yang Y
    Chempluschem; 2023 Aug; 88(8):e202300292. PubMed ID: 37483159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Scale Computer-Aided Design of Covalent Organic Frameworks for CO
    Yang S; Zhu W; Zhu L; Ma X; Yan T; Gu N; Lan Y; Huang Y; Yuan M; Tong M
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56353-56362. PubMed ID: 36511382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures.
    Ullah R; Atilhan M; Anaya B; Al-Muhtaseb S; Aparicio S; Patel H; Thirion D; Yavuz CT
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20772-85. PubMed ID: 27458732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomer Symmetry-Regulated Defect Engineering: In Situ Preparation of Functionalized Covalent Organic Frameworks for Highly Efficient Capture and Separation of Carbon Dioxide.
    He N; Liu B; Jiang B; Li X; Jia Z; Zhang J; Long H; Zhang Y; Zou Y; Yang Y; Xiong S; Cao K; Li Y; Ma L
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16975-16983. PubMed ID: 36943036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-Walled Covalent Organic Frameworks with High Stability.
    Gong Y; Huang S; Lei Z; Wayment L; Chen H; Zhang W
    Chemistry; 2023 Nov; 29(63):e202302135. PubMed ID: 37556201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications.
    Kumar Y; Ahmad I; Rawat A; Pandey RK; Mohanty P; Pandey R
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11605-11616. PubMed ID: 38407024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Judicious design functionalized 3D-COF to enhance CO
    Yuan F; Yang Z; Zhang X; Tong C; Gahungu G; Li W; Zhang J
    J Comput Chem; 2021 May; 42(13):888-896. PubMed ID: 33713464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. (3,3)-Connected Triazine-Based Covalent Organic Frameworks for Efficient CO
    Zhao J; Shen X; Liu YF; Zou RY
    Langmuir; 2023 Nov; 39(46):16367-16373. PubMed ID: 37939229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Pore Flexibility in Imine-Linked Covalent Organic Frameworks on Benzene and Cyclohexane Adsorption.
    Moroni M; Roldan-Molina E; Vismara R; Galli S; Navarro JAR
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40890-40901. PubMed ID: 36041036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting Hydrostability and Carbon Dioxide Capture of Boroxine-Linked Covalent Organic Frameworks by One-Pot Oligoamine Modification.
    Jia C; Liang RR; Gan SX; Jiang SY; Qi QY; Zhao X
    Chemistry; 2023 May; 29(29):e202300186. PubMed ID: 36859630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent Organic Frameworks: The Rising-Star Platforms for the Design of CO
    Chen B; Xie H; Shen L; Xu Y; Zhang M; Zhou M; Li B; Li R; Lin H
    Small; 2023 Apr; 19(17):e2207313. PubMed ID: 36709424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning of Microenvironment in Covalent Organic Framework via Fluorination Strategy promotes Selective CO
    Das N; Paul R; Chatterjee R; Shinde DB; Lai Z; Bhaumik A; Mondal J
    Chem Asian J; 2023 Jan; 18(1):e202200970. PubMed ID: 36373678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directing the structural features of N(2)-phobic nanoporous covalent organic polymers for CO(2) capture and separation.
    Patel HA; Je SH; Park J; Jung Y; Coskun A; Yavuz CT
    Chemistry; 2014 Jan; 20(3):772-80. PubMed ID: 24338860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the Weak CO
    Nandi S; Singh HD; Chakraborty D; Maity R; Vaidhyanathan R
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24976-24983. PubMed ID: 34014632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties.
    Gottschling K; Stegbauer L; Savasci G; Prisco NA; Berkson ZJ; Ochsenfeld C; Chmelka BF; Lotsch BV
    Chem Mater; 2019 Mar; 31(6):1946-1955. PubMed ID: 30930535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Norbornane-based covalent organic frameworks for gas separation.
    Kumar S; Abdulhamid MA; Dinga Wonanke AD; Addicoat MA; Szekely G
    Nanoscale; 2022 Feb; 14(6):2475-2481. PubMed ID: 35103279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insertion of CO
    Kang C; Zhang Z; Xi S; Li H; Usadi AK; Calabro DC; Baugh LS; Wang Y; Zhao D
    Proc Natl Acad Sci U S A; 2023 Feb; 120(9):e2217081120. PubMed ID: 36812199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional diamine-linked covalent organic frameworks for CO
    Apriliyanto YB; Darmawan N; Faginas-Lago N; Lombardi A
    Phys Chem Chem Phys; 2020 Nov; 22(44):25918-25929. PubMed ID: 33164014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.