These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36648289)
1. A High-Rate and Long-Life Aqueous Rechargeable Mg-Ion Battery Based on an Organic Anode Integrating Diimide and Triazine. Cang R; Zhang M; Zhou X; Zhu K; Zhang X; Cao D ChemSusChem; 2023 May; 16(10):e202202347. PubMed ID: 36648289 [TBL] [Abstract][Full Text] [Related]
2. Design and Synthesis of a π-Conjugated N-Heteroaromatic Material for Aqueous Zinc-Organic Batteries with Ultrahigh Rate and Extremely Long Life. Li S; Shang J; Li M; Xu M; Zeng F; Yin H; Tang Y; Han C; Cheng HM Adv Mater; 2023 Dec; 35(50):e2207115. PubMed ID: 36177698 [TBL] [Abstract][Full Text] [Related]
3. Aromatic Organic Small-Molecule Material with (020) Crystal Plane Activation for Wide-Temperature and 68000 Cycle Aqueous Calcium-Ion Batteries. Qiao F; Wang J; Yu R; Huang M; Zhang L; Yang W; Wang H; Wu J; Zhang L; Jiang Y; An Q ACS Nano; 2023 Nov; 17(22):23046-23056. PubMed ID: 37934487 [TBL] [Abstract][Full Text] [Related]
4. Aqueous Calcium-Ion Battery Based on a Mesoporous Organic Anode and a Manganite Cathode with Long Cycling Performance. Cang R; Zhao C; Ye K; Yin J; Zhu K; Yan J; Wang G; Cao D ChemSusChem; 2020 Aug; 13(15):3911-3918. PubMed ID: 32427411 [TBL] [Abstract][Full Text] [Related]
5. Solution-processed perylene diimide-ethylene diamine cathodes for aqueous zinc ion batteries. Jiang B; Huang T; Yang P; Xi X; Su Y; Liu R; Wu D J Colloid Interface Sci; 2021 Sep; 598():36-44. PubMed ID: 33892442 [TBL] [Abstract][Full Text] [Related]
6. An Ultrastable Aqueous Ammonium-Ion Battery Using a Covalent Organic Framework Anode. Tian Z; Kale VS; Thomas S; Kandambeth S; Nadinov I; Wang Y; Wahyudi W; Lei Y; Emwas AH; Bonneau M; Shekhah O; Bakr OM; Mohammed OF; Eddaoudi M; Alshareef HN Adv Mater; 2024 Nov; 36(47):e2409354. PubMed ID: 39344865 [TBL] [Abstract][Full Text] [Related]
7. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Liang Y; Jing Y; Gheytani S; Lee KY; Liu P; Facchetti A; Yao Y Nat Mater; 2017 Aug; 16(8):841-848. PubMed ID: 28628121 [TBL] [Abstract][Full Text] [Related]
8. Practical Aqueous Calcium-Ion Battery Full-Cells for Future Stationary Storage. Adil M; Sarkar A; Roy A; Panda MR; Nagendra A; Mitra S ACS Appl Mater Interfaces; 2020 Mar; 12(10):11489-11503. PubMed ID: 32073827 [TBL] [Abstract][Full Text] [Related]
9. Long Cycle Life for Rechargeable Lithium Battery using Organic Small Molecule Dihydrodibenzo[c,h][2,6]naphthyridine-5,11-dione as a Cathode after Isoindigo Pigment Isomerization. Yang M; Hu W; Li J; Chen T; Zhao S; Chen X; Wang S; Jin H Adv Sci (Weinh); 2024 Jan; 11(4):e2307134. PubMed ID: 38032135 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries. Ma C; Deng C; Liao X; He Y; Ma Z; Xiong H ACS Appl Mater Interfaces; 2018 Oct; 10(43):36969-36975. PubMed ID: 30273484 [TBL] [Abstract][Full Text] [Related]
11. Rocking-Chair Ammonium-Ion Battery: A Highly Reversible Aqueous Energy Storage System. Wu X; Qi Y; Hong JJ; Li Z; Hernandez AS; Ji X Angew Chem Int Ed Engl; 2017 Oct; 56(42):13026-13030. PubMed ID: 28859240 [TBL] [Abstract][Full Text] [Related]
12. High-Energy Aqueous Magnesium Ion Batteries with Capacity-Compensation Evolved from Dynamic Copper Ion Redox. Zhang S; Wang Y; Sun Y; Wang Y; Yang Y; Zhang P; Lv X; Wang J; Zhu H; NuLi Y Small; 2023 May; 19(21):e2300148. PubMed ID: 36840668 [TBL] [Abstract][Full Text] [Related]
13. Self-Supported CoP Nanorod Arrays Grafted on Stainless Steel as an Advanced Integrated Anode for Stable and Long-Life Lithium-Ion Batteries. Xu X; Liu J; Hu R; Liu J; Ouyang L; Zhu M Chemistry; 2017 Apr; 23(22):5198-5204. PubMed ID: 28261892 [TBL] [Abstract][Full Text] [Related]
14. Pseudocapacitive Ti-Doped Niobium Pentoxide Nanoflake Structure Design for a Fast Kinetics Anode toward a High-Performance Mg-Ion-Based Dual-Ion Battery. Yang R; Zhang F; Lei X; Zheng Y; Zhao G; Tang Y; Lee CS ACS Appl Mater Interfaces; 2020 Oct; 12(42):47539-47547. PubMed ID: 32986396 [TBL] [Abstract][Full Text] [Related]
15. Polypeptide Radical Cathode for Aqueous Zn-Ion Battery with Two-Electron Storage and Faster Charging Rate. Deng Y; Teng C; Wu Y; Zhang K; Yan L ChemSusChem; 2022 Apr; 15(7):e202102710. PubMed ID: 35191200 [TBL] [Abstract][Full Text] [Related]
16. Nanocrystal-Assembled Porous Na Zhang F; Li W; Xiang X; Sun M Chemistry; 2017 Sep; 23(52):12944-12948. PubMed ID: 28771948 [TBL] [Abstract][Full Text] [Related]
17. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe Hou BH; Wang YY; Guo JZ; Zhang Y; Ning QL; Yang Y; Li WH; Zhang JP; Wang XL; Wu XL ACS Appl Mater Interfaces; 2018 Jan; 10(4):3581-3589. PubMed ID: 29303243 [TBL] [Abstract][Full Text] [Related]
18. Rechargeable Mg-Ion Full Battery System with High Capacity and High Rate. Zhang Z; Li Y; Zhao G; Zhu L; Sun Y; Besenbacher F; Yu M ACS Appl Mater Interfaces; 2021 Sep; 13(34):40451-40459. PubMed ID: 34416812 [TBL] [Abstract][Full Text] [Related]
19. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries. Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758 [TBL] [Abstract][Full Text] [Related]
20. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]