These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36648302)

  • 1. Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain.
    El Koraychy EY; Ferrando R
    Nanoscale; 2023 Feb; 15(5):2384-2393. PubMed ID: 36648302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regioselective Deposition of Metals on Seeds within a Polymer Matrix.
    Huang L; Shen B; Lin H; Shen J; Jibril L; Zheng CY; Wolverton C; Mirkin CA
    J Am Chem Soc; 2022 Mar; 144(11):4792-4798. PubMed ID: 35258289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Au nanocrystal-directed growth of Au-Cu(2)O core-shell heterostructures with precise morphological control.
    Kuo CH; Hua TE; Huang MH
    J Am Chem Soc; 2009 Dec; 131(49):17871-8. PubMed ID: 19919066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between interdiffusion and shape transformations in nanoalloys evolving from core-shell to intermixed structures.
    Nelli D; Mottet C; Ferrando R
    Faraday Discuss; 2023 Jan; 242(0):52-68. PubMed ID: 36178100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice-mismatch-induced twinning for seeded growth of anisotropic nanostructures.
    Wang Z; Chen Z; Zhang H; Zhang Z; Wu H; Jin M; Wu C; Yang D; Yin Y
    ACS Nano; 2015 Mar; 9(3):3307-13. PubMed ID: 25744113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper can still be epitaxially deposited on palladium nanocrystals to generate core-shell nanocubes despite their large lattice mismatch.
    Jin M; Zhang H; Wang J; Zhong X; Lu N; Li Z; Xie Z; Kim MJ; Xia Y
    ACS Nano; 2012 Mar; 6(3):2566-73. PubMed ID: 22303890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crossover among structural motifs in Pd-Au nanoalloys.
    Zhu B; Guesmi H; Creuze J; Legrand B; Mottet C
    Phys Chem Chem Phys; 2015 Nov; 17(42):28129-36. PubMed ID: 25773011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The shape evolution of gold seeds and gold@silver core-shell nanostructures.
    Wu Y; Jiang P; Jiang M; Wang TW; Guo CF; Xie SS; Wang ZL
    Nanotechnology; 2009 Jul; 20(30):305602. PubMed ID: 19584416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape Changes in AuPd Alloy Nanoparticles Controlled by Anisotropic Surface Stress Relaxation.
    Nelli D; Roncaglia C; Ferrando R; Minnai C
    J Phys Chem Lett; 2021 May; 12(19):4609-4615. PubMed ID: 33971714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating lattice strain impact on the alloyed surface of small Au@PdPt core-shell nanoparticles.
    Williams BP; Yaguchi M; Lo WS; Kao CR; Lamontagne LK; Sneed BT; Brodsky CN; Chou LY; Kuo CH; Tsung CK
    Nanoscale; 2020 Apr; 12(16):8687-8692. PubMed ID: 32267279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic-Scale Structure and Stress Release Mechanism in Core-Shell Nanoparticles.
    Nathanson M; Kanhaiya K; Pryor A; Miao J; Heinz H
    ACS Nano; 2018 Dec; 12(12):12296-12304. PubMed ID: 30457827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA-Encoded Morphological Evolution of Bimetallic Pd@Au Core-shell Nanoparticles from a High-indexed Core.
    Reddy Satyavolu NS; Pishevaresfahani N; Tan LH; Lu Y
    Nano Res; 2018 Sep; 11(9):4549-4561. PubMed ID: 30906510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity.
    Lu CL; Prasad KS; Wu HL; Ho JA; Huang MH
    J Am Chem Soc; 2010 Oct; 132(41):14546-53. PubMed ID: 20873739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous phase synthesis of Au-Ag core-shell nanocrystals with tunable shapes and their optical and catalytic properties.
    Tsao YC; Rej S; Chiu CY; Huang MH
    J Am Chem Soc; 2014 Jan; 136(1):396-404. PubMed ID: 24341355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facet-dependent and au nanocrystal-enhanced electrical and photocatalytic properties of Au-Cu2O core-shell heterostructures.
    Kuo CH; Yang YC; Gwo S; Huang MH
    J Am Chem Soc; 2011 Feb; 133(4):1052-7. PubMed ID: 21174406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of structures and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential.
    Panizon E; Olmos-Asar JA; Peressi M; Ferrando R
    Phys Chem Chem Phys; 2015 Nov; 17(42):28068-75. PubMed ID: 25743271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-level alloying and de-alloying in doped gold nanoparticles.
    Gottlieb E; Qian H; Jin R
    Chemistry; 2013 Mar; 19(13):4238-43. PubMed ID: 23404729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of Au-Pd core-shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination.
    Chiu CY; Yang MY; Lin FC; Huang JS; Huang MH
    Nanoscale; 2014 Jul; 6(13):7656-65. PubMed ID: 24898776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.