These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36648450)

  • 1. Histidine-based coordinative polymers for efficient intracellular protein delivery
    Chen C; Gao P; Wang H; Cheng Y; Lv J
    Biomater Sci; 2023 Feb; 11(5):1765-1775. PubMed ID: 36648450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Cu
    Liang M; Cheng Y; Wang H
    Chemistry; 2023 Apr; 29(22):e202300131. PubMed ID: 36662543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carriers Break Barriers in Drug Delivery: Endocytosis and Endosomal Escape of Gene Delivery Vectors.
    Degors IMS; Wang C; Rehman ZU; Zuhorn IS
    Acc Chem Res; 2019 Jul; 52(7):1750-1760. PubMed ID: 31243966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling endosomal escape using nanoparticle composition: current progress and future perspectives.
    Cupic KI; Rennick JJ; Johnston AP; Such GK
    Nanomedicine (Lond); 2019 Jan; 14(2):215-223. PubMed ID: 30511881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating Endosomal Escape of Caspase-3-Containing Nanomaterials Using Split GFP.
    Anson F; Liu B; Kanjilal P; Wu P; Hardy JA; Thayumanavan S
    Biomacromolecules; 2021 Mar; 22(3):1261-1272. PubMed ID: 33591168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of histidine incorporation on buffer capacity and gene transfection efficiency of HPMA-co-oligolysine brush polymers.
    Shi J; Schellinger JG; Johnson RN; Choi JL; Chou B; Anghel EL; Pun SH
    Biomacromolecules; 2013 Jun; 14(6):1961-70. PubMed ID: 23641942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boronate Building Blocks for Intracellular Protein Delivery.
    Ren Q; Cheng Y; Lv J
    Adv Healthc Mater; 2023 Jun; 12(16):e2202049. PubMed ID: 36366889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineered Histidine-Rich Peptides Enhance Endosomal Escape for Antibody-Targeted Intracellular Delivery of Functional Proteins.
    Zhao Y; Jiang H; Yu J; Wang L; Du J
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202304692. PubMed ID: 37283024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endosomal escape pathways for delivery of biologicals.
    Varkouhi AK; Scholte M; Storm G; Haisma HJ
    J Control Release; 2011 May; 151(3):220-8. PubMed ID: 21078351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers.
    Li H; Luo T; Sheng R; Sun J; Wang Z; Cao A
    Colloids Surf B Biointerfaces; 2016 Dec; 148():73-84. PubMed ID: 27591573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer.
    Cao D; Tian S; Huang H; Chen J; Pan S
    Mol Pharm; 2015 Jan; 12(1):240-52. PubMed ID: 25514347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient delivery of cytosolic proteins by protein-hexahistidine-metal co-assemblies.
    Huang W; Zhou S; Tang B; Xu H; Wu X; Li N; Zan X; Geng W
    Acta Biomater; 2021 Jul; 129():199-208. PubMed ID: 33991683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents.
    Brock DJ; Kondow-McConaghy HM; Hager EC; Pellois JP
    Bioconjug Chem; 2019 Feb; 30(2):293-304. PubMed ID: 30462487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorination Promotes the Cytosolic Delivery of Genes, Proteins, and Peptides.
    Lv J; Wang H; Rong G; Cheng Y
    Acc Chem Res; 2022 Mar; 55(5):722-733. PubMed ID: 35175741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imidazole-Bearing Polymeric Micelles for Enhanced Cellular Uptake, Rapid Endosomal Escape, and On-demand Cargo Release.
    Lu D; An Y; Feng S; Li X; Fan A; Wang Z; Zhao Y
    AAPS PharmSciTech; 2018 Aug; 19(6):2610-2619. PubMed ID: 29916192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.
    Shahbazi MA; Almeida PV; Mäkilä EM; Kaasalainen MH; Salonen JJ; Hirvonen JT; Santos HA
    Biomaterials; 2014 Aug; 35(26):7488-500. PubMed ID: 24906344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles.
    Butt AM; Abdullah N; Rani NNIM; Ahmad N; Amin MCIM
    Pharm Res; 2022 Jun; 39(6):1047-1064. PubMed ID: 35619043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of lauric acid-modified protein nanocapsules escape from intercellular trafficking vesicles and its implication for drug delivery.
    Jiang L; Liang X; Liu G; Zhou Y; Ye X; Chen X; Miao Q; Gao L; Zhang X; Mei L
    Drug Deliv; 2018 Nov; 25(1):985-994. PubMed ID: 29667445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Live-cell imaging of octaarginine-modified polymer dots via single particle tracking.
    Luo Y; Han Y; Hu X; Yin M; Wu C; Li Q; Chen N; Zhao Y
    Cell Prolif; 2019 Mar; 52(2):e12556. PubMed ID: 30710394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies in the design of endosomolytic agents for facilitating endosomal escape in nanoparticles.
    Ahmad A; Khan JM; Haque S
    Biochimie; 2019 May; 160():61-75. PubMed ID: 30797879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.