BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36648698)

  • 1. Fibrin fiber deformation mechanisms: insights from phenomenological modeling to molecular details.
    Filla N; Zhao Y; Wang X
    Biomech Model Mechanobiol; 2023 Jun; 22(3):851-869. PubMed ID: 36648698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombinant fibrinogen reveals the differential roles of α- and γ-chain cross-linking and molecular heterogeneity in fibrin clot strain-stiffening.
    Piechocka IK; Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2017 May; 15(5):938-949. PubMed ID: 28166607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factor XIII stiffens fibrin clots by causing fiber compaction.
    Kurniawan NA; Grimbergen J; Koopman J; Koenderink GH
    J Thromb Haemost; 2014 Oct; 12(10):1687-96. PubMed ID: 25142383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does topology drive fiber polymerization?
    Huang L; Hsiao JP; Powierza C; Taylor RM; Lord ST
    Biochemistry; 2014 Dec; 53(49):7824-34. PubMed ID: 25419972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength, deformability and toughness of uncrosslinked fibrin fibers from theoretical reconstruction of stress-strain curves.
    Maksudov F; Daraei A; Sesha A; Marx KA; Guthold M; Barsegov V
    Acta Biomater; 2021 Dec; 136():327-342. PubMed ID: 34606991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous Wide-Field Planar Strain-Fiber Orientation Distribution Measurement Using Polarized Spatial Domain Imaging.
    Dover CM; Goth W; Goodbrake C; Tunnell JW; Sacks MS
    Ann Biomed Eng; 2022 Mar; 50(3):253-277. PubMed ID: 35084627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibrin self-assembly is adapted to oxidation.
    Rosenfeld MA; Bychkova AV; Shchegolikhin AN; Leonova VB; Kostanova EA; Biryukova MI; Sultimova NB; Konstantinova ML
    Free Radic Biol Med; 2016 Jun; 95():55-64. PubMed ID: 26969792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical origins of inherent tension in fibrin networks.
    Spiewak R; Gosselin A; Merinov D; Litvinov RI; Weisel JW; Tutwiler V; Purohit PK
    J Mech Behav Biomed Mater; 2022 Sep; 133():105328. PubMed ID: 35803206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of fibrin. A light scattering study.
    Hantgan RR; Hermans J
    J Biol Chem; 1979 Nov; 254(22):11272-81. PubMed ID: 500644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrin Fiber Stiffness Is Strongly Affected by Fiber Diameter, but Not by Fibrinogen Glycation.
    Li W; Sigley J; Pieters M; Helms CC; Nagaswami C; Weisel JW; Guthold M
    Biophys J; 2016 Mar; 110(6):1400-10. PubMed ID: 27028649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substitution of the human αC region with the analogous chicken domain generates a fibrinogen with severely impaired lateral aggregation: fibrin monomers assemble into protofibrils but protofibrils do not assemble into fibers.
    Ping L; Huang L; Cardinali B; Profumo A; Gorkun OV; Lord ST
    Biochemistry; 2011 Oct; 50(42):9066-75. PubMed ID: 21932842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modular fibrinogen model that captures the stress-strain behavior of fibrin fibers.
    Averett RD; Menn B; Lee EH; Helms CC; Barker T; Guthold M
    Biophys J; 2012 Oct; 103(7):1537-44. PubMed ID: 23062346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Structural Models of Fibrin Oligomers.
    Zhmurov A; Protopopova AD; Litvinov RI; Zhukov P; Weisel JW; Barsegov V
    Structure; 2018 Jun; 26(6):857-868.e4. PubMed ID: 29754827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fracture mechanics analysis of fibrin fibers using mesoscale and continuum level methods.
    Yesudasan S; Averett RD
    Inform Med Unlocked; 2021; 23():. PubMed ID: 33981824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of fibrin.
    Hermans J
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1189-93. PubMed ID: 286304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
    Houser JR; Hudson NE; Ping L; O'Brien ET; Superfine R; Lord ST; Falvo MR
    Biophys J; 2010 Nov; 99(9):3038-47. PubMed ID: 21044602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. α-α Cross-links increase fibrin fiber elasticity and stiffness.
    Helms CC; Ariëns RA; Uitte de Willige S; Standeven KF; Guthold M
    Biophys J; 2012 Jan; 102(1):168-75. PubMed ID: 22225811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A constitutive model for a maturing fibrin network.
    van Kempen THS; Bogaerds ACB; Peters GWM; van de Vosse FN
    Biophys J; 2014 Jul; 107(2):504-513. PubMed ID: 25028892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of nascent cohesive fiber-fiber interactions to the non-linear elasticity of fibrin networks under tensile load.
    Britton S; Kim O; Pancaldi F; Xu Z; Litvinov RI; Weisel JW; Alber M
    Acta Biomater; 2019 Aug; 94():514-523. PubMed ID: 31152942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sequence of cleavage of fibrinopeptides from fibrinogen is important for protofibril formation and enhancement of lateral aggregation in fibrin clots.
    Weisel JW; Veklich Y; Gorkun O
    J Mol Biol; 1993 Jul; 232(1):285-97. PubMed ID: 8331664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.