These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36648763)

  • 21. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis.
    Shi Y; Tao M; Wang Y; Zang X; Ma X; Qiu A; Zhuang S; Liu N
    J Pathol; 2020 Jan; 250(1):79-94. PubMed ID: 31579944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accumulation of advanced glycation end products and beta 2-microglobulin in fibrotic thickening of the peritoneum in long-term peritoneal dialysis patients.
    Nakamoto H; Hamada C; Shimaoka T; Sekiguchi Y; Io H; Kaneko K; Horikoshi S; Tomino Y
    J Artif Organs; 2014 Mar; 17(1):60-8. PubMed ID: 24337623
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IL-6
    Yang X; Yan H; Jiang N; Yu Z; Yuan J; Ni Z; Fang W
    Am J Physiol Renal Physiol; 2020 Feb; 318(2):F338-F353. PubMed ID: 31841386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PPAR-γ agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage.
    Sandoval P; Loureiro J; González-Mateo G; Pérez-Lozano ML; Maldonado-Rodríguez A; Sánchez-Tomero JA; Mendoza L; Santamaría B; Ortiz A; Ruíz-Ortega M; Selgas R; Martín P; Sánchez-Madrid F; Aguilera A; López-Cabrera M
    Lab Invest; 2010 Oct; 90(10):1517-32. PubMed ID: 20531289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple extracellular vesicle types in peritoneal dialysis effluent are prominent and contain known biomarkers.
    Pearson LJ; Klaharn IY; Thongsawang B; Manuprasert W; Saejew T; Somparn P; Chuengsaman P; Kanjanabuch T; Pisitkun T
    PLoS One; 2017; 12(6):e0178601. PubMed ID: 28594924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis.
    Masola V; Bonomini M; Borrelli S; Di Liberato L; Vecchi L; Onisto M; Gambaro G; Palumbo R; Arduini A
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.
    Yokoi H; Kasahara M; Mori K; Ogawa Y; Kuwabara T; Imamaki H; Kawanishi T; Koga K; Ishii A; Kato Y; Mori KP; Toda N; Ohno S; Muramatsu H; Muramatsu T; Sugawara A; Mukoyama M; Nakao K
    Kidney Int; 2012 Jan; 81(2):160-9. PubMed ID: 21881556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure.
    López-Cabrera M; Aguilera A; Aroeira LS; Ramírez-Huesca M; Pérez-Lozano ML; Jiménez-Heffernan JA; Bajo MA; del Peso G; Sánchez-Tomero JA; Selgas R
    Perit Dial Int; 2006; 26(1):26-34. PubMed ID: 16538870
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Periostin: a matricellular protein involved in peritoneal injury during peritoneal dialysis.
    Braun N; Sen K; Alscher MD; Fritz P; Kimmel M; Morelle J; Goffin E; Jörres A; Wüthrich RP; Cohen CD; Segerer S
    Perit Dial Int; 2013; 33(5):515-28. PubMed ID: 23378472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autophagy promotes fibrosis and apoptosis in the peritoneum during long-term peritoneal dialysis.
    Wu J; Xing C; Zhang L; Mao H; Chen X; Liang M; Wang F; Ren H; Cui H; Jiang A; Wang Z; Zou M; Ji Y
    J Cell Mol Med; 2018 Feb; 22(2):1190-1201. PubMed ID: 29077259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Klotho is a novel therapeutic target in peritoneal fibrosis via Wnt signaling inhibition.
    Kadoya H; Satoh M; Nishi Y; Kondo M; Wada Y; Sogawa Y; Kidokoro K; Nagasu H; Sasaki T; Kashihara N
    Nephrol Dial Transplant; 2020 May; 35(5):773-781. PubMed ID: 32221606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Curcumin ameliorates peritoneal fibrosis via inhibition of transforming growth factor-activated kinase 1 (TAK1) pathway in a rat model of peritoneal dialysis.
    Zhao JL; Zhang T; Shao X; Zhu JJ; Guo MZ
    BMC Complement Altern Med; 2019 Oct; 19(1):280. PubMed ID: 31647008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage.
    Loureiro J; Aguilera A; Selgas R; Sandoval P; Albar-Vizcaíno P; Pérez-Lozano ML; Ruiz-Carpio V; Majano PL; Lamas S; Rodríguez-Pascual F; Borras-Cuesta F; Dotor J; López-Cabrera M
    J Am Soc Nephrol; 2011 Sep; 22(9):1682-95. PubMed ID: 21742730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells.
    Lee SH; Kang HY; Kim KS; Nam BY; Paeng J; Kim S; Li JJ; Park JT; Kim DK; Han SH; Yoo TH; Kang SW
    Lab Invest; 2012 Dec; 92(12):1698-711. PubMed ID: 23007133
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blocking core fucosylation of epidermal growth factor (EGF) receptor prevents peritoneal fibrosis progression.
    Yu C; Yang N; Wang W; Du X; Tang Q; Lin H; Li L
    Ren Fail; 2021 Dec; 43(1):869-877. PubMed ID: 33993842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats.
    Li L; Shen N; Wang N; Wang W; Tang Q; Du X; Carrero JJ; Wang K; Deng Y; Li Z; Lin H; Wu T
    Kidney Int; 2018 Jun; 93(6):1384-1396. PubMed ID: 29571940
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CX3CL1-CX3CR1 interaction mediates macrophage-mesothelial cross talk and promotes peritoneal fibrosis.
    Helmke A; Nordlohne J; Balzer MS; Dong L; Rong S; Hiss M; Shushakova N; Haller H; von Vietinghoff S
    Kidney Int; 2019 Jun; 95(6):1405-1417. PubMed ID: 30948201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The selection of peritoneal mesothelial cells is important for cell therapy to prevent peritoneal fibrosis.
    Kitamura S; Horimoto N; Tsuji K; Inoue A; Takiue K; Sugiyama H; Makino H
    Tissue Eng Part A; 2014 Feb; 20(3-4):529-39. PubMed ID: 24007428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acidic organelles mediate TGF-β1-induced cellular fibrosis via (pro)renin receptor and vacuolar ATPase trafficking in human peritoneal mesothelial cells.
    Oba-Yabana I; Mori T; Takahashi C; Hirose T; Ohsaki Y; Kinugasa S; Muroya Y; Sato E; Nguyen G; Piedagnel R; Ronco PM; Totsune K; Ito S
    Sci Rep; 2018 Feb; 8(1):2648. PubMed ID: 29422602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions.
    Terri M; Trionfetti F; Montaldo C; Cordani M; Tripodi M; Lopez-Cabrera M; Strippoli R
    Front Immunol; 2021; 12():607204. PubMed ID: 33854496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.