These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36649061)

  • 1. Identification of LRRK2 Inhibitors through Computational Drug Repurposing.
    Tan S; Lu R; Yao D; Wang J; Gao P; Xie G; Liu H; Yao X
    ACS Chem Neurosci; 2023 Feb; 14(3):481-493. PubMed ID: 36649061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Modeling Study on the Interaction Mechanism between the LRRK2 G2019S Mutant and Type I Inhibitors by Integrating Molecular Dynamics Simulation, Binding Free Energy Calculations, and Pharmacophore Modeling.
    Tan S; Zhang Q; Wang J; Gao P; Xie G; Liu H; Yao X
    ACS Chem Neurosci; 2022 Mar; 13(5):599-612. PubMed ID: 35188741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual Screening and Biological Activity Evaluation of New Potent Inhibitors Targeting LRRK2 Kinase Domain.
    Tan S; Gong X; Liu H; Yao X
    ACS Chem Neurosci; 2021 Sep; 12(17):3214-3224. PubMed ID: 34387082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding Inhibitor Egression from Wild-Type and G2019S Mutant LRRK2 Kinase: Insights into Unbinding Mechanisms for Precision Drug Design in Parkinson's Disease.
    Naskar A; Roy RK; Srivastava D; Patra N
    J Phys Chem B; 2024 Jul; 128(28):6657-6669. PubMed ID: 38822803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel LRRK2 inhibitors by structure-based virtual screening and alchemical free energy calculation.
    Tan S; Gong X; Liu H; Yao X
    Phys Chem Chem Phys; 2024 Jul; 26(29):19775-19786. PubMed ID: 38984923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the functional impact of mutational drift in LRRK2 gene and identification of specific inhibitors for the treatment of Parkinson disease.
    Nagarajan N; Chellam J; Kannan RR
    J Cell Biochem; 2018 Jun; 119(6):4878-4889. PubMed ID: 29369408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular insights of the G2019S substitution in LRRK2 kinase domain associated with Parkinson's disease: A molecular dynamics simulation approach.
    Agrahari AK; Doss GPC; Siva R; Magesh R; Zayed H
    J Theor Biol; 2019 May; 469():163-171. PubMed ID: 30844370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of G2019S-Selective Leucine Rich Repeat Protein Kinase 2 inhibitors with in vivo efficacy.
    Leśniak RK; Nichols RJ; Schonemann M; Zhao J; Gajera CR; Fitch WL; Lam G; Nguyen KC; Smith M; Montine TJ
    Eur J Med Chem; 2022 Feb; 229():114080. PubMed ID: 34992038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of Parkinson's disease.
    Domingos S; Duarte T; Saraiva L; Guedes RC; Moreira R
    Future Med Chem; 2019 Aug; 11(15):1953-1977. PubMed ID: 31517532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-Based Virtual Screening and De Novo Design to Identify Submicromolar Inhibitors of G2019S Mutant of Leucine-Rich Repeat Kinase 2.
    Park H; Kim T; Kim K; Jang A; Hong S
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade.
    Thakur G; Kumar V; Lee KW; Won C
    Genes (Basel); 2022 Aug; 13(8):. PubMed ID: 36011337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation.
    Matikainen-Ankney BA; Kezunovic N; Mesias RE; Tian Y; Williams FM; Huntley GW; Benson DL
    J Neurosci; 2016 Jul; 36(27):7128-41. PubMed ID: 27383589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of chemicals to inhibit the kinase activity of leucine-rich repeat kinase 2 (LRRK2), a Parkinson's disease-associated protein.
    Yun H; Heo HY; Kim HH; DooKim N; Seol W
    Bioorg Med Chem Lett; 2011 May; 21(10):2953-7. PubMed ID: 21474311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyzing a Cure: Discovery and development of LRRK2 inhibitors for the treatment of Parkinson's disease.
    Baidya AT; Deshwal S; Das B; Mathew AT; Devi B; Sandhir R; Kumar R
    Bioorg Chem; 2024 Feb; 143():106972. PubMed ID: 37995640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clustering of motor and nonmotor traits in leucine-rich repeat kinase 2 G2019S Parkinson's disease nonparkinsonian relatives: A multicenter family study.
    Mestre TA; Pont-Sunyer C; Kausar F; Visanji NP; Ghate T; Connolly BS; Gasca-Salas C; Kern DS; Jain J; Slow EJ; Faust-Socher A; Kasten M; Wadia PM; Zadikoff C; Kumar P; de Bie RM; Thomsen T; Lang AE; Schüle B; Klein C; Tolosa E; Marras C
    Mov Disord; 2018 Jul; 33(6):960-965. PubMed ID: 29665080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 - 2013).
    Kethiri RR; Bakthavatchalam R
    Expert Opin Ther Pat; 2014 Jul; 24(7):745-57. PubMed ID: 24918198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exhaustion of mitochondrial and autophagic reserve may contribute to the development of LRRK2
    Juárez-Flores DL; González-Casacuberta I; Ezquerra M; Bañó M; Carmona-Pontaque F; Catalán-García M; Guitart-Mampel M; Rivero JJ; Tobias E; Milisenda JC; Tolosa E; Marti MJ; Fernández-Santiago R; Cardellach F; Morén C; Garrabou G
    J Transl Med; 2018 Jun; 16(1):160. PubMed ID: 29884186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring natural compound, Panicutine as leucine-rich repeat kinase 2 inhibitor against Parkinson's disease: a structure-guided approach.
    Majrashi TA; Wahab S; Almoyad MAA; Alkhathami AG; Alshahrani MY
    J Biomol Struct Dyn; 2023 Oct; ():1-10. PubMed ID: 37837424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Leucine-Rich Repeat Kinase 2 (LRRK2) Inhibitors Using a Crystallographic Surrogate Derived from Checkpoint Kinase 1 (CHK1).
    Williamson DS; Smith GP; Acheson-Dossang P; Bedford ST; Chell V; Chen IJ; Daechsel JCA; Daniels Z; David L; Dokurno P; Hentzer M; Herzig MC; Hubbard RE; Moore JD; Murray JB; Newland S; Ray SC; Shaw T; Surgenor AE; Terry L; Thirstrup K; Wang Y; Christensen KV
    J Med Chem; 2017 Nov; 60(21):8945-8962. PubMed ID: 29023112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LRRK2 G2019S Mutation Inhibits Degradation of α-Synuclein in an In Vitro Model of Parkinson's Disease.
    Hu D; Niu JY; Xiong J; Nie SK; Zeng F; Zhang ZH
    Curr Med Sci; 2018 Dec; 38(6):1012-1017. PubMed ID: 30536063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.