These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 36649080)
1. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. Grassmann AA; Tokarz R; Golino C; McLain MA; Groshong AM; Radolf JD; Caimano MJ J Clin Invest; 2023 Mar; 133(5):. PubMed ID: 36649080 [TBL] [Abstract][Full Text] [Related]
2. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Grove AP; Liveris D; Iyer R; Petzke M; Rudman J; Caimano MJ; Radolf JD; Schwartz I mBio; 2017 Aug; 8(4):. PubMed ID: 28830947 [TBL] [Abstract][Full Text] [Related]
3. BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. Ouyang Z; Deka RK; Norgard MV PLoS Pathog; 2011 Feb; 7(2):e1001272. PubMed ID: 21347346 [TBL] [Abstract][Full Text] [Related]
4. Cyclic Di-GMP receptor PlzA controls virulence gene expression through RpoS in Borrelia burgdorferi. He M; Zhang JJ; Ye M; Lou Y; Yang XF Infect Immun; 2014 Jan; 82(1):445-52. PubMed ID: 24218478 [TBL] [Abstract][Full Text] [Related]
5. Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Caimano MJ; Iyer R; Eggers CH; Gonzalez C; Morton EA; Gilbert MA; Schwartz I; Radolf JD Mol Microbiol; 2007 Sep; 65(5):1193-217. PubMed ID: 17645733 [TBL] [Abstract][Full Text] [Related]
6. Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. Ouyang Z; Narasimhan S; Neelakanta G; Kumar M; Pal U; Fikrig E; Norgard MV BMC Microbiol; 2012 Mar; 12():44. PubMed ID: 22443136 [TBL] [Abstract][Full Text] [Related]
7. BadR (BB0693) controls growth phase-dependent induction of rpoS and bosR in Borrelia burgdorferi via recognizing TAAAATAT motifs. Ouyang Z; Zhou J Mol Microbiol; 2015 Dec; 98(6):1147-67. PubMed ID: 26331438 [TBL] [Abstract][Full Text] [Related]
8. Gene regulation in Borrelia burgdorferi. Samuels DS Annu Rev Microbiol; 2011; 65():479-99. PubMed ID: 21801026 [TBL] [Abstract][Full Text] [Related]
9. The Fur homologue BosR requires Arg39 to activate rpoS transcription in Borrelia burgdorferi and thereby direct spirochaete infection in mice. Katona LI Microbiology (Reading); 2015 Nov; 161(11):2243-55. PubMed ID: 26318670 [TBL] [Abstract][Full Text] [Related]
10. RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Caimano MJ; Eggers CH; Hazlett KR; Radolf JD Infect Immun; 2004 Nov; 72(11):6433-45. PubMed ID: 15501774 [TBL] [Abstract][Full Text] [Related]
11. Borrelia burgdorferi requires the alternative sigma factor RpoS for dissemination within the vector during tick-to-mammal transmission. Dunham-Ems SM; Caimano MJ; Eggers CH; Radolf JD PLoS Pathog; 2012 Feb; 8(2):e1002532. PubMed ID: 22359504 [TBL] [Abstract][Full Text] [Related]
12. BadR directly represses the expression of the glycerol utilization operon in the Lyme disease pathogen. Zhang J-J; Raghunandanan S; Wang Q; Priya R; Alanazi F; Lou Y; Yang XF J Bacteriol; 2024 Feb; 206(2):e0034023. PubMed ID: 38214528 [TBL] [Abstract][Full Text] [Related]
13. PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation of Borrelia burgdorferi. Groshong AM; Grassmann AA; Luthra A; McLain MA; Provatas AA; Radolf JD; Caimano MJ PLoS Pathog; 2021 Jul; 17(7):e1009725. PubMed ID: 34265024 [TBL] [Abstract][Full Text] [Related]
14. Positive and Negative Regulation of Glycerol Utilization by the c-di-GMP Binding Protein PlzA in Borrelia burgdorferi. Zhang JJ; Chen T; Yang Y; Du J; Li H; Troxell B; He M; Carrasco SE; Gomelsky M; Yang XF J Bacteriol; 2018 Nov; 200(22):. PubMed ID: 30181123 [No Abstract] [Full Text] [Related]
15. A Fur family protein BosR is a novel RNA-binding protein that controls rpoS RNA stability in the Lyme disease pathogen. Raghunandanan S; Priya R; Alanazi F; Lybecker MC; Schlax PJ; Yang XF Nucleic Acids Res; 2024 May; 52(9):5320-5335. PubMed ID: 38366569 [TBL] [Abstract][Full Text] [Related]
16. Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Caimano MJ; Dunham-Ems S; Allard AM; Cassera MB; Kenedy M; Radolf JD Infect Immun; 2015 Aug; 83(8):3043-60. PubMed ID: 25987708 [TBL] [Abstract][Full Text] [Related]
17. Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Ouyang Z; Zhou J; Brautigam CA; Deka R; Norgard MV Microbiology (Reading); 2014 May; 160(Pt 5):851-862. PubMed ID: 24608174 [TBL] [Abstract][Full Text] [Related]
18. Global repression of host-associated genes of the Lyme disease spirochete through post-transcriptional modulation of the alternative sigma factor RpoS. Dulebohn DP; Hayes BM; Rosa PA PLoS One; 2014; 9(3):e93141. PubMed ID: 24671196 [TBL] [Abstract][Full Text] [Related]
19. CsrA (BB0184) is not involved in activation of the RpoN-RpoS regulatory pathway in Borrelia burgdorferi. Ouyang Z; Zhou J; Norgard MV Infect Immun; 2014 Apr; 82(4):1511-22. PubMed ID: 24452681 [TBL] [Abstract][Full Text] [Related]