These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36649125)

  • 1. Automated Library Generation and Serendipity Quantification Enables Diverse Discovery in Coordination Chemistry.
    Kowalski DJ; MacGregor CM; Long DL; Bell NL; Cronin L
    J Am Chem Soc; 2023 Feb; 145(4):2332-2341. PubMed ID: 36649125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery.
    Wilbraham L; Mehr SHM; Cronin L
    Acc Chem Res; 2021 Jan; 54(2):253-262. PubMed ID: 33370095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High impact technologies for natural products screening.
    Koehn FE
    Prog Drug Res; 2008; 65():175, 177-210. PubMed ID: 18084916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Balancing novelty with confined chemical space in modern drug discovery.
    Medina-Franco JL; Martinez-Mayorga K; Meurice N
    Expert Opin Drug Discov; 2014 Feb; 9(2):151-65. PubMed ID: 24350718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated and automated high-throughput purification of libraries on microscale.
    Ginsburg-Moraff C; Grob J; Chin K; Eastman G; Wildhaber S; Bayliss M; Mues HM; Palmieri M; Poirier J; Reck M; Luneau A; Rodde S; Reilly J; Wagner T; Brocklehurst CE; Wyler R; Dunstan D; Marziale AN
    SLAS Technol; 2022 Dec; 27(6):350-360. PubMed ID: 36028206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Automated, Open-Source Workflow for the Generation of (3D) Fragment Libraries.
    Dekker T; Janssen MACH; Sutherland C; Aben RWM; Scheeren HW; Blanco-Ania D; Rutjes FPJT; Wijtmans M; de Esch IJP
    ACS Med Chem Lett; 2023 May; 14(5):583-590. PubMed ID: 37197454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Library Design of Ligands at the Surface of Colloidal Nanocrystals.
    Giansante C
    Acc Chem Res; 2020 Aug; 53(8):1458-1467. PubMed ID: 32692152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Intelligence for Autonomous Molecular Design: A Perspective.
    Joshi RP; Kumar N
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing DNA Encoded Libraries of Diverse Products in a Focused Property Space.
    Zhu H; Flanagan ME; Stanton RV
    J Chem Inf Model; 2019 Nov; 59(11):4645-4653. PubMed ID: 31689098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid access to compound libraries through flow technology: fully automated synthesis of a 3-aminoindolizine library via orthogonal diversification.
    Lange PP; James K
    ACS Comb Sci; 2012 Oct; 14(10):570-8. PubMed ID: 22954105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic strategies in combinatorial chemistry.
    Spaller MR; Burger MT; Fardis M; Bartlett PA
    Curr Opin Chem Biol; 1997 Jun; 1(1):47-53. PubMed ID: 9667834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Library design practices for success in lead generation with small molecule libraries.
    Goodnow RA; Guba W; Haap W
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):649-60. PubMed ID: 14683492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Pursuit of the Exceptional: Research Directions for Machine Learning in Chemical and Materials Science.
    Schrier J; Norquist AJ; Buonassisi T; Brgoch J
    J Am Chem Soc; 2023 Oct; 145(40):21699-21716. PubMed ID: 37754929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring Aldol Reactions on DNA and Applications to Produce Diverse Structures: An Example of Expanding Chemical Space of DNA-Encoded Compounds by Diversity-Oriented Synthesis.
    Wu R; Gao S; Du T; Cai K; Cheng X; Fan J; Feng J; Shaginian A; Li J; Wan J; Liu G
    Chem Asian J; 2020 Dec; 15(23):4033-4037. PubMed ID: 33119184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach.
    Hoffer L; Voitovich YV; Raux B; Carrasco K; Muller C; Fedorov AY; Derviaux C; Amouric A; Betzi S; Horvath D; Varnek A; Collette Y; Combes S; Roche P; Morelli X
    J Med Chem; 2018 Jul; 61(13):5719-5732. PubMed ID: 29883107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization.
    Rademacher C; Seeberger PH
    Handb Exp Pharmacol; 2016; 232():73-89. PubMed ID: 26330259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity and Chemical Library Networks of Large Data Sets.
    Dunn TB; Seabra GM; Kim TD; Juárez-Mercado KE; Li C; Medina-Franco JL; Miranda-Quintana RA
    J Chem Inf Model; 2022 May; 62(9):2186-2201. PubMed ID: 34723537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.