These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36649139)

  • 21. Whole-Cell P450 Biocatalysis Using Engineered Escherichia coli with Fine-Tuned Heme Biosynthesis.
    Hu B; Yu H; Zhou J; Li J; Chen J; Du G; Lee SY; Zhao X
    Adv Sci (Weinh); 2023 Feb; 10(6):e2205580. PubMed ID: 36526588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformations using prokaryotic P450 monooxygenases.
    Urlacher V; Schmid RD
    Curr Opin Biotechnol; 2002 Dec; 13(6):557-64. PubMed ID: 12482514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determinants of thermostability in the cytochrome P450 fold.
    Harris KL; Thomson RES; Strohmaier SJ; Gumulya Y; Gillam EMJ
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):97-115. PubMed ID: 28822812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities.
    Yun CH; Kim KH; Kim DH; Jung HC; Pan JG
    Trends Biotechnol; 2007 Jul; 25(7):289-98. PubMed ID: 17532492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanding the toolbox of organic chemists: directed evolution of P450 monooxygenases as catalysts in regio- and stereoselective oxidative hydroxylation.
    Roiban GD; Reetz MT
    Chem Commun (Camb); 2015 Feb; 51(12):2208-24. PubMed ID: 25483552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparative use of isolated CYP102 monooxygenases -- a critical appraisal.
    Eiben S; Kaysser L; Maurer S; Kühnel K; Urlacher VB; Schmid RD
    J Biotechnol; 2006 Aug; 124(4):662-9. PubMed ID: 16716428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An artificial self-sufficient cytochrome P450 directly nitrates fluorinated tryptophan analogs with a different regio-selectivity.
    Zuo R; Zhang Y; Huguet-Tapia JC; Mehta M; Dedic E; Bruner SD; Loria R; Ding Y
    Biotechnol J; 2016 May; 11(5):624-32. PubMed ID: 26743860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CYP106A2-A versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds.
    Schmitz D; Janocha S; Kiss FM; Bernhardt R
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):11-22. PubMed ID: 28780179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cluster screening: an effective approach for probing the substrate space of uncharacterized cytochrome P450s.
    von Bühler C; Le-Huu P; Urlacher VB
    Chembiochem; 2013 Nov; 14(16):2189-98. PubMed ID: 24115388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis.
    Polic V; Auclair K
    Bioorg Med Chem; 2014 Oct; 22(20):5547-54. PubMed ID: 25035263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and Cooperativity in Substrate-Enzyme Interactions: Perspectives on Enzyme Engineering and Inhibitor Design.
    Rajakumara E; Abhishek S; Nitin K; Saniya D; Bajaj P; Schwaneberg U; Davari MD
    ACS Chem Biol; 2022 Feb; 17(2):266-280. PubMed ID: 35041385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytochromes P450 in the biocatalytic valorization of lignin.
    Wolf ME; Hinchen DJ; DuBois JL; McGeehan JE; Eltis LD
    Curr Opin Biotechnol; 2022 Feb; 73():43-50. PubMed ID: 34303185
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE.
    Dodani SC; Cahn JK; Heinisch T; Brinkmann-Chen S; McIntosh JA; Arnold FH
    Chembiochem; 2014 Oct; 15(15):2259-67. PubMed ID: 25182183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering bacterial cytochrome P450 (P450) BM3 into a prototype with human P450 enzyme activity using indigo formation.
    Park SH; Kim DH; Kim D; Kim DH; Jung HC; Pan JG; Ahn T; Kim D; Yun CH
    Drug Metab Dispos; 2010 May; 38(5):732-9. PubMed ID: 20100815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.
    Musumeci MA; Lozada M; Rial DV; Mac Cormack WP; Jansson JK; Sjöling S; Carroll J; Dionisi HM
    Mar Drugs; 2017 Apr; 15(4):. PubMed ID: 28397770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytochromes P450 as versatile biocatalysts.
    Bernhardt R
    J Biotechnol; 2006 Jun; 124(1):128-45. PubMed ID: 16516322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Riboflavin Is Directly Involved in N-Dealkylation Catalyzed by Bacterial Cytochrome P450 Monooxygenases.
    Zhang C; Lu M; Lin L; Huang Z; Zhang R; Wu X; Chen Y
    Chembiochem; 2020 Aug; 21(16):2297-2305. PubMed ID: 32243060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases.
    Capdevila JH; Falck JR
    Prostaglandins Other Lipid Mediat; 2002 Aug; 68-69():325-44. PubMed ID: 12432927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s.
    Gillam EM
    Arch Biochem Biophys; 2007 Aug; 464(2):176-86. PubMed ID: 17537393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for the construction of insect P450 fusion enzymes.
    Talmann L; Wiesner J; Vilcinskas A
    Z Naturforsch C J Biosci; 2017 Sep; 72(9-10):405-415. PubMed ID: 28866653
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.