These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Latent variable sdelection in multidimensional item response theory models using the expectation model selection algorithm. Xu PF; Shang L; Zheng QZ; Shan N; Tang ML Br J Math Stat Psychol; 2022 May; 75(2):363-394. PubMed ID: 34918834 [TBL] [Abstract][Full Text] [Related]
3. Latent Variable Selection for Multidimensional Item Response Theory Models via [Formula: see text] Regularization. Sun J; Chen Y; Liu J; Ying Z; Xin T Psychometrika; 2016 Dec; 81(4):921-939. PubMed ID: 27699561 [TBL] [Abstract][Full Text] [Related]
4. Regularized Variational Estimation for Exploratory Item Factor Analysis. Cho AE; Xiao J; Wang C; Xu G Psychometrika; 2024 Mar; 89(1):347-375. PubMed ID: 35831697 [TBL] [Abstract][Full Text] [Related]
5. Gaussian variational estimation for multidimensional item response theory. Cho AE; Wang C; Zhang X; Xu G Br J Math Stat Psychol; 2021 Jul; 74 Suppl 1():52-85. PubMed ID: 33064318 [TBL] [Abstract][Full Text] [Related]
6. Variable selection for joint models of multivariate skew-normal longitudinal and survival data. Tang J; Tang AM; Tang N Stat Methods Med Res; 2023 Sep; 32(9):1694-1710. PubMed ID: 37408456 [TBL] [Abstract][Full Text] [Related]
7. Variational Estimation for Multidimensional Generalized Partial Credit Model. Cui C; Wang C; Xu G Psychometrika; 2024 Sep; 89(3):929-957. PubMed ID: 38429494 [TBL] [Abstract][Full Text] [Related]
8. Efficient ℓ Li X; Xie S; Zeng D; Wang Y Stat Med; 2018 Feb; 37(3):473-486. PubMed ID: 29082539 [TBL] [Abstract][Full Text] [Related]
9. An improved stochastic EM algorithm for large-scale full-information item factor analysis. Zhang S; Chen Y; Liu Y Br J Math Stat Psychol; 2020 Feb; 73(1):44-71. PubMed ID: 30511445 [TBL] [Abstract][Full Text] [Related]
10. A Note on Improving Variational Estimation for Multidimensional Item Response Theory. Ma C; Ouyang J; Wang C; Xu G Psychometrika; 2024 Mar; 89(1):172-204. PubMed ID: 37979074 [TBL] [Abstract][Full Text] [Related]
11. A penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation. Chen LS; Prentice RL; Wang P Biometrics; 2014 Jun; 70(2):312-22. PubMed ID: 24471933 [TBL] [Abstract][Full Text] [Related]
12. Estimating three- and four-parameter MIRT models with importance-weighted sampling enhanced variational auto-encoder. Liu T; Wang C; Xu G Front Psychol; 2022; 13():935419. PubMed ID: 36046415 [TBL] [Abstract][Full Text] [Related]
13. Bayesian Adaptive Lasso for Detecting Item-Trait Relationship and Differential Item Functioning in Multidimensional Item Response Theory Models. Shan N; Xu PF Psychometrika; 2024 Dec; 89(4):1337-1365. PubMed ID: 39127801 [TBL] [Abstract][Full Text] [Related]
15. Using EM Algorithm for Finite Mixtures and Reformed Supplemented EM for MIRT Calibration. Chen P; Wang C Psychometrika; 2021 Mar; 86(1):299-326. PubMed ID: 33591556 [TBL] [Abstract][Full Text] [Related]
16. Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models. Ma C; Ouyang J; Xu G Psychometrika; 2023 Mar; 88(1):175-207. PubMed ID: 35596101 [TBL] [Abstract][Full Text] [Related]
18. A Gibbs sampler for the multidimensional four-parameter logistic item response model via a data augmentation scheme. Fu Z; Zhang S; Su YH; Shi N; Tao J Br J Math Stat Psychol; 2021 Nov; 74(3):427-464. PubMed ID: 34002857 [TBL] [Abstract][Full Text] [Related]
19. Marginalized maximum a posteriori estimation for the four-parameter logistic model under a mixture modelling framework. Meng X; Xu G; Zhang J; Tao J Br J Math Stat Psychol; 2020 Nov; 73 Suppl 1():51-82. PubMed ID: 31552688 [TBL] [Abstract][Full Text] [Related]
20. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model. Chen Y; Li X; Liu J; Ying Z Psychometrika; 2018 Sep; 83(3):538-562. PubMed ID: 29532405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]