These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36649274)
1. Machine learning with textural analysis of longitudinal multiparametric MRI and molecular subtypes accurately predicts pathologic complete response in patients with invasive breast cancer. Syed A; Adam R; Ren T; Lu J; Maldjian T; Duong TQ PLoS One; 2023; 18(1):e0280320. PubMed ID: 36649274 [TBL] [Abstract][Full Text] [Related]
2. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients. Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693 [TBL] [Abstract][Full Text] [Related]
3. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. Hussain L; Huang P; Nguyen T; Lone KJ; Ali A; Khan MS; Li H; Suh DY; Duong TQ Biomed Eng Online; 2021 Jun; 20(1):63. PubMed ID: 34183038 [TBL] [Abstract][Full Text] [Related]
4. Texture Analysis with 3.0-T MRI for Association of Response to Neoadjuvant Chemotherapy in Breast Cancer. Eun NL; Kang D; Son EJ; Park JS; Youk JH; Kim JA; Gweon HM Radiology; 2020 Jan; 294(1):31-41. PubMed ID: 31769740 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Multiparametric MRI Radiomics-Based Nomogram in Prediction of Response to Neoadjuvant Chemotherapy in Breast Cancer: A Two-Center study. Wang X; Hua H; Han J; Zhong X; Liu J; Chen J Clin Breast Cancer; 2023 Aug; 23(6):e331-e344. PubMed ID: 37321954 [TBL] [Abstract][Full Text] [Related]
6. Investigating the prediction value of multiparametric magnetic resonance imaging at 3 T in response to neoadjuvant chemotherapy in breast cancer. Minarikova L; Bogner W; Pinker K; Valkovič L; Zaric O; Bago-Horvath Z; Bartsch R; Helbich TH; Trattnig S; Gruber S Eur Radiol; 2017 May; 27(5):1901-1911. PubMed ID: 27651141 [TBL] [Abstract][Full Text] [Related]
7. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using radiomics of pretreatment dynamic contrast-enhanced MRI. Yoshida K; Kawashima H; Kannon T; Tajima A; Ohno N; Terada K; Takamatsu A; Adachi H; Ohno M; Miyati T; Ishikawa S; Ikeda H; Gabata T Magn Reson Imaging; 2022 Oct; 92():19-25. PubMed ID: 35636571 [TBL] [Abstract][Full Text] [Related]
8. Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Shi L; Zhang Y; Nie K; Sun X; Niu T; Yue N; Kwong T; Chang P; Chow D; Chen JH; Su MY Magn Reson Imaging; 2019 Sep; 61():33-40. PubMed ID: 31059768 [TBL] [Abstract][Full Text] [Related]
9. Multiparametric magnetic resonance imaging for predicting pathological response after the first cycle of neoadjuvant chemotherapy in breast cancer. Li X; Abramson RG; Arlinghaus LR; Kang H; Chakravarthy AB; Abramson VG; Farley J; Mayer IA; Kelley MC; Meszoely IM; Means-Powell J; Grau AM; Sanders M; Yankeelov TE Invest Radiol; 2015 Apr; 50(4):195-204. PubMed ID: 25360603 [TBL] [Abstract][Full Text] [Related]
10. Deep learning prediction of pathological complete response, residual cancer burden, and progression-free survival in breast cancer patients. Dammu H; Ren T; Duong TQ PLoS One; 2023; 18(1):e0280148. PubMed ID: 36607982 [TBL] [Abstract][Full Text] [Related]
11. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
13. Breast Multiparametric MRI for Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer: The BMMR2 Challenge. Li W; Partridge SC; Newitt DC; Steingrimsson J; Marques HS; Bolan PJ; Hirano M; Bearce BA; Kalpathy-Cramer J; Boss MA; Teng X; Zhang J; Cai J; Kontos D; Cohen EA; Mankowski WC; Liu M; Ha R; Pellicer-Valero OJ; Maier-Hein K; Rabinovici-Cohen S; Tlusty T; Ozery-Flato M; Parekh VS; Jacobs MA; Yan R; Sung K; Kazerouni AS; DiCarlo JC; Yankeelov TE; Chenevert TL; Hylton NM Radiol Imaging Cancer; 2024 Jan; 6(1):e230033. PubMed ID: 38180338 [TBL] [Abstract][Full Text] [Related]
14. Early prediction of pathologic complete response of breast cancer after neoadjuvant chemotherapy using longitudinal ultrafast dynamic contrast-enhanced MRI. Cao Y; Wang X; Li L; Shi J; Zeng X; Huang Y; Chen H; Jiang F; Yin T; Nickel D; Zhang J Diagn Interv Imaging; 2023 Dec; 104(12):605-614. PubMed ID: 37543490 [TBL] [Abstract][Full Text] [Related]
15. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL. Li W; Newitt DC; Wilmes LJ; Jones EF; Arasu V; Gibbs J; La Yun B; Li E; Partridge SC; Kornak J; ; Esserman LJ; Hylton NM J Magn Reson Imaging; 2019 Dec; 50(6):1742-1753. PubMed ID: 31026118 [TBL] [Abstract][Full Text] [Related]
16. Intratumor partitioning and texture analysis of dynamic contrast-enhanced (DCE)-MRI identifies relevant tumor subregions to predict pathological response of breast cancer to neoadjuvant chemotherapy. Wu J; Gong G; Cui Y; Li R J Magn Reson Imaging; 2016 Nov; 44(5):1107-1115. PubMed ID: 27080586 [TBL] [Abstract][Full Text] [Related]
17. Diffusion-weighted MRI for predicting pathologic response to neoadjuvant chemotherapy in breast cancer: evaluation with mono-, bi-, and stretched-exponential models. Suo S; Yin Y; Geng X; Zhang D; Hua J; Cheng F; Chen J; Zhuang Z; Cao M; Xu J J Transl Med; 2021 Jun; 19(1):236. PubMed ID: 34078388 [TBL] [Abstract][Full Text] [Related]
18. Breast Cancer Classification on Multiparametric MRI - Increased Performance of Boosting Ensemble Methods. Vamvakas A; Tsivaka D; Logothetis A; Vassiou K; Tsougos I Technol Cancer Res Treat; 2022; 21():15330338221087828. PubMed ID: 35341421 [No Abstract] [Full Text] [Related]
19. Texture analysis using machine learning-based 3-T magnetic resonance imaging for predicting recurrence in breast cancer patients treated with neoadjuvant chemotherapy. Eun NL; Kang D; Son EJ; Youk JH; Kim JA; Gweon HM Eur Radiol; 2021 Sep; 31(9):6916-6928. PubMed ID: 33693994 [TBL] [Abstract][Full Text] [Related]
20. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy. Liu HQ; Lin SY; Song YD; Mai SY; Yang YD; Chen K; Wu Z; Zhao HY Eur Radiol; 2023 Apr; 33(4):2965-2974. PubMed ID: 36418622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]