These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36649274)
21. Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI. Caballo M; Sanderink WBG; Han L; Gao Y; Athanasiou A; Mann RM J Magn Reson Imaging; 2023 Jan; 57(1):97-110. PubMed ID: 35633290 [TBL] [Abstract][Full Text] [Related]
22. Enhancing pathological complete response prediction in breast cancer: the role of dynamic characterization of DCE-MRI and its association with tumor heterogeneity. Zhang X; Teng X; Zhang J; Lai Q; Cai J Breast Cancer Res; 2024 May; 26(1):77. PubMed ID: 38745321 [TBL] [Abstract][Full Text] [Related]
23. Machine learning with magnetic resonance imaging for prediction of response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Liang X; Yu X; Gao T Eur J Radiol; 2022 May; 150():110247. PubMed ID: 35290910 [TBL] [Abstract][Full Text] [Related]
24. Quantitative multiparametric MRI predicts response to neoadjuvant therapy in the community setting. Virostko J; Sorace AG; Slavkova KP; Kazerouni AS; Jarrett AM; DiCarlo JC; Woodard S; Avery S; Goodgame B; Patt D; Yankeelov TE Breast Cancer Res; 2021 Nov; 23(1):110. PubMed ID: 34838096 [TBL] [Abstract][Full Text] [Related]
25. Nomogram for Early Prediction of Pathological Complete Response to Neoadjuvant Chemotherapy in Breast Cancer Using Dynamic Contrast-enhanced and Diffusion-weighted MRI. Zhao R; Lu H; Li YB; Shao ZZ; Ma WJ; Liu PF Acad Radiol; 2022 Jan; 29 Suppl 1():S155-S163. PubMed ID: 33593702 [TBL] [Abstract][Full Text] [Related]
26. Role of diffusion-weighted imaging as an adjunct to contrast-enhanced breast MRI in evaluating residual breast cancer following neoadjuvant chemotherapy. Hahn SY; Ko EY; Han BK; Shin JH; Ko ES Eur J Radiol; 2014 Feb; 83(2):283-8. PubMed ID: 24315957 [TBL] [Abstract][Full Text] [Related]
27. Early prediction of pathological complete response to neoadjuvant chemotherapy combining DCE-MRI and apparent diffusion coefficient values in breast Cancer. Liang X; Chen X; Yang Z; Liao Y; Wang M; Li Y; Fan W; Dai Z; Zhang Y BMC Cancer; 2022 Dec; 22(1):1250. PubMed ID: 36460972 [TBL] [Abstract][Full Text] [Related]
28. Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer. Liu C; Huang X; Chen X; Shi Z; Liu C; Liang Y; Huang X; Chen M; Chen X; Liang C; Liu Z Acad Radiol; 2023 Sep; 30 Suppl 2():S62-S70. PubMed ID: 37019697 [TBL] [Abstract][Full Text] [Related]
29. Predicting pathological complete response of neoadjuvant radiotherapy and targeted therapy for soft tissue sarcoma by whole-tumor texture analysis of multisequence MRI imaging. Miao L; Cao Y; Zuo L; Zhang H; Guo C; Yang Z; Shi Z; Jiang J; Wang S; Li Y; Wang Y; Xie L; Li M; Lu N Eur Radiol; 2023 Jun; 33(6):3984-3994. PubMed ID: 36580095 [TBL] [Abstract][Full Text] [Related]
30. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048 [TBL] [Abstract][Full Text] [Related]
31. Machine learning with multiparametric breast MRI for prediction of Ki-67 and histologic grade in early-stage luminal breast cancer. Song SE; Cho KR; Cho Y; Kim K; Jung SP; Seo BK; Woo OH Eur Radiol; 2022 Feb; 32(2):853-863. PubMed ID: 34383145 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer using diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Xu HD; Zhang YQ Neoplasma; 2017; 64(3):430-436. PubMed ID: 28253722 [TBL] [Abstract][Full Text] [Related]
33. Early Prediction of Breast Cancer Therapy Response using Multiresolution Fractal Analysis of DCE-MRI Parametric Maps. Machireddy A; Thibault G; Tudorica A; Afzal A; Mishal M; Kemmer K; Naik A; Troxell M; Goranson E; Oh K; Roy N; Jafarian N; Holtorf M; Huang W; Song X Tomography; 2019 Mar; 5(1):90-98. PubMed ID: 30854446 [TBL] [Abstract][Full Text] [Related]
34. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI. Zhou Z; Adrada BE; Candelaria RP; Elshafeey NA; Boge M; Mohamed RM; Pashapoor S; Sun J; Xu Z; Panthi B; Son JB; Guirguis MS; Patel MM; Whitman GJ; Moseley TW; Scoggins ME; White JB; Litton JK; Valero V; Hunt KK; Tripathy D; Yang W; Wei P; Yam C; Pagel MD; Rauch GM; Ma J Sci Rep; 2023 Jan; 13(1):1171. PubMed ID: 36670144 [TBL] [Abstract][Full Text] [Related]
35. Effect of breast cancer phenotype on diagnostic performance of MRI in the prediction to response to neoadjuvant treatment. Bufi E; Belli P; Di Matteo M; Terribile D; Franceschini G; Nardone L; Petrone G; Bonomo L Eur J Radiol; 2014 Sep; 83(9):1631-8. PubMed ID: 24938669 [TBL] [Abstract][Full Text] [Related]
36. Role of the Apparent Diffusion Coefficient in the Prediction of Response to Neoadjuvant Chemotherapy in Patients With Locally Advanced Breast Cancer. Bufi E; Belli P; Costantini M; Cipriani A; Di Matteo M; Bonatesta A; Franceschini G; Terribile D; Mulé A; Nardone L; Bonomo L Clin Breast Cancer; 2015 Oct; 15(5):370-80. PubMed ID: 25891905 [TBL] [Abstract][Full Text] [Related]
37. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
38. [Predictive value of combination of MRI tumor regression grade and apparent diffusion coefficient for pathological complete remission after neoadjuvant treatment of locally advanced rectal cancer]. Xu N; Huang FC; Li WL; Luan X; Jiang YM; He B Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Apr; 24(4):359-365. PubMed ID: 33878826 [No Abstract] [Full Text] [Related]
39. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer. Bian T; Wu Z; Lin Q; Wang H; Ge Y; Duan S; Fu G; Cui C; Su X Br J Radiol; 2020 Nov; 93(1115):20200287. PubMed ID: 32822542 [TBL] [Abstract][Full Text] [Related]
40. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms. Zheng G; Peng J; Shu Z; Jin H; Han L; Yuan Z; Qin X; Hou J; He X; Gong X J Cancer Res Clin Oncol; 2024 Mar; 150(3):147. PubMed ID: 38512406 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]