These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36649569)

  • 21. AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning.
    Fang Y; Xu F; Wei L; Jiang Y; Chen J; Wei L; Wei DQ
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631407
    [TBL] [Abstract][Full Text] [Related]  

  • 22. afpCOOL: A tool for antifreeze protein prediction.
    Eslami M; Shirali Hossein Zade R; Takalloo Z; Mahdevar G; Emamjomeh A; Sajedi RH; Zahiri J
    Heliyon; 2018 Jul; 4(7):e00705. PubMed ID: 30094375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.
    Basu K; Garnham CP; Nishimiya Y; Tsuda S; Braslavsky I; Davies P
    J Vis Exp; 2014 Jan; (83):e51185. PubMed ID: 24457629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical study of interaction of winter flounder antifreeze protein with ice.
    Jorov A; Zhorov BS; Yang DS
    Protein Sci; 2004 Jun; 13(6):1524-37. PubMed ID: 15152087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DBP-GAPred: An intelligent method for prediction of DNA-binding proteins types by enhanced evolutionary profile features with ensemble learning.
    Barukab O; Ali F; Khan SA
    J Bioinform Comput Biol; 2021 Aug; 19(4):2150018. PubMed ID: 34291709
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Will It Be Beneficial To Simulate the Antifreeze Proteins at Ice Freezing Condition or at Lower Temperature?
    Kar RK; Bhunia A
    J Phys Chem B; 2015 Sep; 119(35):11485-95. PubMed ID: 26287639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accurate Prediction of Antifreeze Protein from Sequences through Natural Language Text Processing and Interpretable Machine Learning Approaches.
    Dhibar S; Jana B
    J Phys Chem Lett; 2023 Dec; 14(48):10727-10735. PubMed ID: 38009833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 33. XGB-DrugPred: computational prediction of druggable proteins using eXtreme gradient boosting and optimized features set.
    Sikander R; Ghulam A; Ali F
    Sci Rep; 2022 Apr; 12(1):5505. PubMed ID: 35365726
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving Antifreeze Proteins Prediction with Protein Language Models and Hybrid Feature Extraction Networks.
    Wu J; Liu Y; Zhu Y; Yu DJ
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39316498
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spruce budworm antifreeze protein: changes in structure and dynamics at low temperature.
    Graether SP; Gagné SM; Spyracopoulos L; Jia Z; Davies PL; Sykes BD
    J Mol Biol; 2003 Apr; 327(5):1155-68. PubMed ID: 12662938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure and application of antifreeze proteins from Antarctic bacteria.
    Muñoz PA; Márquez SL; González-Nilo FD; Márquez-Miranda V; Blamey JM
    Microb Cell Fact; 2017 Aug; 16(1):138. PubMed ID: 28784139
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of antifreeze proteins on the vitrification of mouse oocytes: comparison of three different antifreeze proteins.
    Lee HH; Lee HJ; Kim HJ; Lee JH; Ko Y; Kim SM; Lee JR; Suh CS; Kim SH
    Hum Reprod; 2015 Sep; 30(9):2110-9. PubMed ID: 26202918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the Sequence Characteristics of Antifreeze Protein.
    Zhang YH; Li Z; Lu L; Zeng T; Chen L; Li H; Huang T; Cai YD
    Life (Basel); 2021 Jun; 11(6):. PubMed ID: 34204983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.