These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36649646)

  • 1. 3D Graphene-Nanowire "Sandwich" Thermal Interface with Ultralow Resistance and Stiffness.
    Jing L; Cheng R; Garg R; Gong W; Lee I; Schmit A; Cohen-Karni T; Zhang X; Shen S
    ACS Nano; 2023 Feb; 17(3):2602-2610. PubMed ID: 36649646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.
    Gong W; Li P; Zhang Y; Feng X; Major J; DeVoto D; Paret P; King C; Narumanchi S; Shen S
    Nano Lett; 2018 Jun; 18(6):3586-3592. PubMed ID: 29767979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Thermal Conductivity of Sandwich-Structured Flexible Thermal Interface Materials.
    Jing L; Cheng R; Tasoglu M; Wang Z; Wang Q; Zhai H; Shen S; Cohen-Karni T; Garg R; Lee I
    Small; 2023 Mar; 19(11):e2207015. PubMed ID: 36642828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polymeric Self-Assembled Monolayers Anomalously Improve Thermal Transport across Graphene/Polymer Interfaces.
    Zhang L; Liu L
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28949-28958. PubMed ID: 28766936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics.
    Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultralow Thermal Conductivity and Thermal Diffusivity of Graphene/Metal Heterostructures through Scarcity of Low-Energy Modes in Graphene.
    Zheng W; Huang B; Koh YK
    ACS Appl Mater Interfaces; 2020 Feb; 12(8):9572-9579. PubMed ID: 31909972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Density 3D-Boron Nitride and 3D-Graphene for High-Performance Nano-Thermal Interface Material.
    Loeblein M; Tsang SH; Pawlik M; Phua EJ; Yong H; Zhang XW; Gan CL; Teo EH
    ACS Nano; 2017 Feb; 11(2):2033-2044. PubMed ID: 28157329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance.
    Sudhindra S; Kargar F; Balandin AA
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34203500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superior Thermal Conductivity of Graphene Film/Cu-Zr Alloy Composites for Thermal Management Applications.
    Chang G; Wang L; Zhang Y; Li X; Chen K; Kan D; Zhang W; Zhang S; Dong L; Li L; Bai X; Zhang H; Huo W
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):56156-56168. PubMed ID: 36508197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drastically Enhancing Moduli of Graphene-Coated Carbon Nanotube Aerogels via Densification while Retaining Temperature-Invariant Superelasticity and Ultrahigh Efficiency.
    Tsui MN; Kim KH; Islam MF
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37954-37961. PubMed ID: 28991429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management.
    Cui Y; Qin Z; Wu H; Li M; Hu Y
    Nat Commun; 2021 Feb; 12(1):1284. PubMed ID: 33627644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced thermal properties of epoxy composites by constructing thermal conduction networks with low content of three-dimensional graphene.
    Li C; Huang M; Zhang Z; Qin Y; Liang L; Tian ZQ; Ali A; Shen PK
    Nanotechnology; 2023 Mar; 34(23):. PubMed ID: 36877999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.
    Loeblein M; Bolker A; Tsang SH; Atar N; Uzan-Saguy C; Verker R; Gouzman I; Grossman E; Teo EH
    Small; 2015 Dec; 11(48):6425-34. PubMed ID: 26479496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Transport in Multidimensional Silicon-Graphene Hybrid Nanostructures.
    Gong W; Garg R; Guo R; Lee S; Cohen-Karni T; Shen S
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50206-50212. PubMed ID: 34662104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hierarchically Structured Graphene/Ag Nanowires Paper as Thermal Interface Material.
    Lv L; Ying J; Chen L; Tao P; Sun L; Yang K; Fu L; Yu J; Yan Q; Dai W; Jiang N; Lin CT
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials.
    Wang S; Cheng Y; Wang R; Sun J; Gao L
    ACS Appl Mater Interfaces; 2014 May; 6(9):6481-6. PubMed ID: 24716483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management.
    Vu MC; Kim IH; Choi WK; Lim CS; Islam MA; Kim SR
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26413-26423. PubMed ID: 32469197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically Aligned High-Quality Graphene Foams for Anisotropically Conductive Polymer Composites with Ultrahigh Through-Plane Thermal Conductivities.
    An F; Li X; Min P; Liu P; Jiang ZG; Yu ZZ
    ACS Appl Mater Interfaces; 2018 May; 10(20):17383-17392. PubMed ID: 29706070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.