BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 36650051)

  • 21. Comparative genomic hybridization in pineal parenchymal tumors.
    Rickert CH; Simon R; Bergmann M; Dockhorn-Dworniczak B; Paulus W
    Genes Chromosomes Cancer; 2001 Jan; 30(1):99-104. PubMed ID: 11107183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benign and Malignant Tumors of the Pineal Region.
    Upadhyayula PS; Neira JA; Miller ML; Bruce JN
    Adv Exp Med Biol; 2023; 1405():153-173. PubMed ID: 37452938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bidirectional transcription initiation marks accessible chromatin and is not specific to enhancers.
    Young RS; Kumar Y; Bickmore WA; Taylor MS
    Genome Biol; 2017 Dec; 18(1):242. PubMed ID: 29284524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver.
    Sugathan A; Waxman DJ
    Mol Cell Biol; 2013 Sep; 33(18):3594-610. PubMed ID: 23836885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histopathologic review of pineal parenchymal tumors identifies novel morphologic subtypes and prognostic factors for outcome.
    Raleigh DR; Solomon DA; Lloyd SA; Lazar A; Garcia MA; Sneed PK; Clarke JL; McDermott MW; Berger MS; Tihan T; Haas-Kogan DA
    Neuro Oncol; 2017 Jan; 19(1):78-88. PubMed ID: 27282397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA copy number alterations in central primitive neuroectodermal tumors and tumors of the pineal region: an international individual patient data meta-analysis.
    von Bueren AO; Gerss J; Hagel C; Cai H; Remke M; Hasselblatt M; Feuerstein BG; Pernet S; Delattre O; Korshunov A; Rutkowski S; Pfister SM; Baudis M
    J Neurooncol; 2012 Sep; 109(2):415-23. PubMed ID: 22772606
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Uncoupling of X-linked gene silencing from XIST binding by DICER1 and chromatin modulation on human inactive X chromosome.
    Kota SK; Roy Chowdhury D; Rao LK; Padmalatha V; Singh L; Bhadra U
    Chromosoma; 2015 Jun; 124(2):249-62. PubMed ID: 25428210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A unique chromatin signature uncovers early developmental enhancers in humans.
    Rada-Iglesias A; Bajpai R; Swigut T; Brugmann SA; Flynn RA; Wysocka J
    Nature; 2011 Feb; 470(7333):279-83. PubMed ID: 21160473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.
    Henikoff S; Henikoff JG; Kaya-Okur HS; Ahmad K
    Elife; 2020 Nov; 9():. PubMed ID: 33191916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity.
    Zhang B; Day DS; Ho JW; Song L; Cao J; Christodoulou D; Seidman JG; Crawford GE; Park PJ; Pu WT
    Genome Res; 2013 Jun; 23(6):917-27. PubMed ID: 23547170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.
    Chen CY; Morris Q; Mitchell JA
    BMC Genomics; 2012 Apr; 13():152. PubMed ID: 22537144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis.
    Bogdanovic O; Fernandez-Miñán A; Tena JJ; de la Calle-Mustienes E; Hidalgo C; van Kruysbergen I; van Heeringen SJ; Veenstra GJ; Gómez-Skarmeta JL
    Genome Res; 2012 Oct; 22(10):2043-53. PubMed ID: 22593555
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BRCA1 mutations attenuate super-enhancer function and chromatin looping in haploinsufficient human breast epithelial cells.
    Zhang X; Wang Y; Chiang HC; Hsieh YP; Lu C; Park BH; Jatoi I; Jin VX; Hu Y; Li R
    Breast Cancer Res; 2019 Apr; 21(1):51. PubMed ID: 30995943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two cases of pineal anlage tumor with molecular analysis.
    Scherpelz KP; Crotty EE; Paulson VA; Lockwood CM; Leary SES; Ellenbogen RG; Lee A; Ermoian RP; Vitanza NA; Cole BL
    Pediatr Blood Cancer; 2022 Apr; 69(4):e29596. PubMed ID: 35129878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chromatin signatures of enhancers and their dynamic regulation.
    Barral A; Déjardin J
    Nucleus; 2023 Dec; 14(1):2160551. PubMed ID: 36602897
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells.
    Fufa TD; Baxter LL; Wedel JC; Gildea DE; ; Loftus SK; Pavan WJ
    Epigenetics Chromatin; 2019 Aug; 12(1):50. PubMed ID: 31399133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenomic landscape of enhancer elements during Hydra head organizer formation.
    Reddy PC; Gungi A; Ubhe S; Galande S
    Epigenetics Chromatin; 2020 Oct; 13(1):43. PubMed ID: 33046126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The hyper-activation of transcriptional enhancers in breast cancer.
    Li QL; Wang DY; Ju LG; Yao J; Gao C; Lei PJ; Li LY; Zhao XL; Wu M
    Clin Epigenetics; 2019 Mar; 11(1):48. PubMed ID: 30867030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize.
    Oka R; Zicola J; Weber B; Anderson SN; Hodgman C; Gent JI; Wesselink JJ; Springer NM; Hoefsloot HCJ; Turck F; Stam M
    Genome Biol; 2017 Jul; 18(1):137. PubMed ID: 28732548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.