These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36650151)

  • 1. Electronic excited states in deep variational Monte Carlo.
    Entwistle MT; Schätzle Z; Erdman PA; Hermann J; Noé F
    Nat Commun; 2023 Jan; 14(1):274. PubMed ID: 36650151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep-neural-network solution of the electronic Schrödinger equation.
    Hermann J; Schätzle Z; Noé F
    Nat Chem; 2020 Oct; 12(10):891-897. PubMed ID: 32968231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convergence to the fixed-node limit in deep variational Monte Carlo.
    Schätzle Z; Hermann J; Noé F
    J Chem Phys; 2021 Mar; 154(12):124108. PubMed ID: 33810658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Improved Penalty-Based Excited-State Variational Monte Carlo Approach with Deep-Learning Ansatzes.
    Szabó PB; Schätzle Z; Entwistle MT; Noé F
    J Chem Theory Comput; 2024 Aug; 20(18):7922-35. PubMed ID: 39213603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.
    Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M
    J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ab initio quantum chemistry with neural-network wavefunctions.
    Hermann J; Spencer J; Choo K; Mezzacapo A; Foulkes WMC; Pfau D; Carleo G; Noé F
    Nat Rev Chem; 2023 Oct; 7(10):692-709. PubMed ID: 37558761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Monte Carlo Treatment of the Charge Transfer and Diradical Electronic Character in a Retinal Chromophore Minimal Model.
    Zen A; Coccia E; Gozem S; Olivucci M; Guidoni L
    J Chem Theory Comput; 2015 Mar; 11(3):992-1005. PubMed ID: 25821414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symmetries and Many-Body Excitations with Neural-Network Quantum States.
    Choo K; Carleo G; Regnault N; Neupert T
    Phys Rev Lett; 2018 Oct; 121(16):167204. PubMed ID: 30387658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
    Mazzola G; Zen A; Sorella S
    J Chem Phys; 2012 Oct; 137(13):134112. PubMed ID: 23039590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Static and Dynamical Correlation in Diradical Molecules by Quantum Monte Carlo Using the Jastrow Antisymmetrized Geminal Power Ansatz.
    Zen A; Coccia E; Luo Y; Sorella S; Guidoni L
    J Chem Theory Comput; 2014 Mar; 10(3):1048-61. PubMed ID: 26580182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient quantum monte carlo energies for molecular dynamics simulations.
    Grossman JC; Mitas L
    Phys Rev Lett; 2005 Feb; 94(5):056403. PubMed ID: 15783668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DeepQMC: An open-source software suite for variational optimization of deep-learning molecular wave functions.
    Schätzle Z; Szabó PB; Mezera M; Hermann J; Noé F
    J Chem Phys; 2023 Sep; 159(9):. PubMed ID: 37671962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Introducing QMC/MMpol: Quantum Monte Carlo in Polarizable Force Fields for Excited States.
    Guareschi R; Zulfikri H; Daday C; Floris FM; Amovilli C; Mennucci B; Filippi C
    J Chem Theory Comput; 2016 Apr; 12(4):1674-83. PubMed ID: 26959751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule.
    Zen A; Luo Y; Sorella S; Guidoni L
    J Chem Theory Comput; 2013 Oct; 9(10):4332-4350. PubMed ID: 24526929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Space-warp coordinate transformation for efficient ionic force calculations in quantum Monte Carlo.
    Nakano K; Raghav A; Sorella S
    J Chem Phys; 2022 Jan; 156(3):034101. PubMed ID: 35065566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114105. PubMed ID: 30243277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring CIPSI Expansions for QMC Calculations of Electronic Excitations: The Case Study of Thiophene.
    Dash M; Moroni S; Filippi C; Scemama A
    J Chem Theory Comput; 2021 Jun; 17(6):3426-3434. PubMed ID: 34029098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground- and Excited-State Geometry Optimization of Small Organic Molecules with Quantum Monte Carlo.
    Guareschi R; Filippi C
    J Chem Theory Comput; 2013 Dec; 9(12):5513-25. PubMed ID: 26592286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.