BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36650283)

  • 1. One-class machine learning classification of skin tissue based on manually scanned optical coherence tomography imaging.
    Liu X; Ouellette S; Jamgochian M; Liu Y; Rao B
    Sci Rep; 2023 Jan; 13(1):867. PubMed ID: 36650283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic diagnosis of macular diseases from OCT volume based on its two-dimensional feature map and convolutional neural network with attention mechanism.
    Sun Y; Zhang H; Yao X
    J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32940026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers.
    Kang J; Ullah Z; Gwak J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
    Pal A; Garain U; Chandra A; Chatterjee R; Senapati S
    Comput Methods Programs Biomed; 2018 Jun; 159():59-69. PubMed ID: 29650319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions.
    El-Khatib H; Popescu D; Ichim L
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32245258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    Biomed Opt Express; 2017 Feb; 8(2):1203-1220. PubMed ID: 28271012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Automated CAD System for Accurate Grading of Uveitis Using Optical Coherence Tomography Images.
    Haggag S; Khalifa F; Abdeltawab H; Elnakib A; Ghazal M; Mohamed MA; Sandhu HS; Alghamdi NS; El-Baz A
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450898
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic detection of retinal regions using fully convolutional networks for diagnosis of abnormal maculae in optical coherence tomography images.
    Sun Z; Sun Y
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31111697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep-learning approach for automated thickness measurement of epithelial tissue and scab using optical coherence tomography.
    Ji Y; Yang S; Zhou K; Rocliffe HR; Pellicoro A; Cash JL; Wang R; Li C; Huang Z
    J Biomed Opt; 2022 Jan; 27(1):. PubMed ID: 35043611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.
    Younghak Shin ; Balasingham I
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3277-3280. PubMed ID: 29060597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.
    Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F
    J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features.
    Cavaliere C; Vilades E; Alonso-Rodríguez MC; Rodrigo MJ; Pablo LE; Miguel JM; López-Guillén E; Morla EMS; Boquete L; Garcia-Martin E
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31816925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks.
    Alawad M; Gao S; Qiu JX; Yoon HJ; Blair Christian J; Penberthy L; Mumphrey B; Wu XC; Coyle L; Tourassi G
    J Am Med Inform Assoc; 2020 Jan; 27(1):89-98. PubMed ID: 31710668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning-based classification of the movements of children with profound or severe intellectual or multiple disabilities using environment data features.
    Herbuela VRDM; Karita T; Furukawa Y; Wada Y; Toya A; Senba S; Onishi E; Saeki T
    PLoS One; 2022; 17(6):e0269472. PubMed ID: 35771797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single fiber OCT imager for breast tissue classification based on deep learning.
    Liu Y; Hubbi B; Liu X
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11233():. PubMed ID: 32665745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
    Vu H; Kim HC; Jung M; Lee JH
    Neuroimage; 2020 Dec; 223():117328. PubMed ID: 32896633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manually scanned single fiber optical coherence tomography for skin cancer characterization.
    Chuchvara N; Rao B; Liu X
    Sci Rep; 2021 Jul; 11(1):15570. PubMed ID: 34330974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time deep learning assisted skin layer delineation in dermal optical coherence tomography.
    Liu X; Chuchvara N; Liu Y; Rao B
    OSA Contin; 2021 Jul; 4(7):2008-2023. PubMed ID: 35822177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases.
    Möller J; Bartsch A; Lenz M; Tischoff I; Krug R; Welp H; Hofmann MR; Schmieder K; Miller D
    Int J Comput Assist Radiol Surg; 2021 Sep; 16(9):1517-1526. PubMed ID: 34053010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.