BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36650523)

  • 1. Doxycycline-dependent Cas9-expressing pig resources for conditional in vivo gene nullification and activation.
    Jin Q; Liu X; Zhuang Z; Huang J; Gou S; Shi H; Zhao Y; Ouyang Z; Liu Z; Li L; Mao J; Ge W; Chen F; Yu M; Guan Y; Ye Y; Tang C; Huang R; Wang K; Lai L
    Genome Biol; 2023 Jan; 24(1):8. PubMed ID: 36650523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible Genome Editing with Conditional CRISPR/Cas9 Mice.
    Katigbak A; Robert F; Paquet M; Pelletier J
    G3 (Bethesda); 2018 May; 8(5):1627-1635. PubMed ID: 29519936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of an ObLiGaRe Doxycycline Inducible Cas9 system for pre-clinical cancer drug discovery.
    Lundin A; Porritt MJ; Jaiswal H; Seeliger F; Johansson C; Bidar AW; Badertscher L; Wimberger S; Davies EJ; Hardaker E; Martins CP; James E; Admyre T; Taheri-Ghahfarokhi A; Bradley J; Schantz A; Alaeimahabadi B; Clausen M; Xu X; Mayr LM; Nitsch R; Bohlooly-Y M; Barry ST; Maresca M
    Nat Commun; 2020 Sep; 11(1):4903. PubMed ID: 32994412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic mice for in vivo epigenome editing with CRISPR-based systems.
    Gemberling MP; Siklenka K; Rodriguez E; Tonn-Eisinger KR; Barrera A; Liu F; Kantor A; Li L; Cigliola V; Hazlett MF; Williams CA; Bartelt LC; Madigan VJ; Bodle JC; Daniels H; Rouse DC; Hilton IB; Asokan A; Ciofani M; Poss KD; Reddy TE; West AE; Gersbach CA
    Nat Methods; 2021 Aug; 18(8):965-974. PubMed ID: 34341582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A piggyBac-based toolkit for inducible genome editing in mammalian cells.
    Schertzer MD; Thulson E; Braceros KCA; Lee DM; Hinkle ER; Murphy RM; Kim SO; Vitucci ECM; Calabrese JM
    RNA; 2019 Aug; 25(8):1047-1058. PubMed ID: 31101683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective targeting of the oncogenic
    Gao Q; Ouyang W; Kang B; Han X; Xiong Y; Ding R; Li Y; Wang F; Huang L; Chen L; Wang D; Dong X; Zhang Z; Li Y; Ze B; Hou Y; Yang H; Ma Y; Gu Y; Chao CC
    Theranostics; 2020; 10(11):5137-5153. PubMed ID: 32308773
    [No Abstract]   [Full Text] [Related]  

  • 7. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish.
    Prykhozhij SV; Caceres L; Berman JN
    Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cre-dependent Cas9-expressing pigs enable efficient in vivo genome editing.
    Wang K; Jin Q; Ruan D; Yang Y; Liu Q; Wu H; Zhou Z; Ouyang Z; Liu Z; Zhao Y; Zhao B; Zhang Q; Peng J; Lai C; Fan N; Liang Y; Lan T; Li N; Wang X; Wang X; Fan Y; Doevendans PA; Sluijter JPG; Liu P; Li X; Lai L
    Genome Res; 2017 Dec; 27(12):2061-2071. PubMed ID: 29146772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Portable CRISPR-Cas9
    Goh YJ; Barrangou R
    Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33397707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient CRISPR/Cas9-mediated gene editing in Guangdong small-ear spotted pig cells using an optimized electrotransfection method.
    Wei YY; Zhan QM; Zhu XX; Yan AF; Feng J; Liu L; Li JH; Tang DS
    Biotechnol Lett; 2020 Nov; 42(11):2091-2109. PubMed ID: 32494996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.
    Altenbuchner J
    Appl Environ Microbiol; 2016 Sep; 82(17):5421-7. PubMed ID: 27342565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA.
    Lee HJ; Kim HJ; Lee SJ
    CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha.
    Numamoto M; Maekawa H; Kaneko Y
    J Biosci Bioeng; 2017 Nov; 124(5):487-492. PubMed ID: 28666889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Term Evaluation of Retinal Morphology and Function in Rosa26-Cas9 Knock-In Mice.
    Mohan K; Dubey SK; Jung K; Dubey R; Wang QJ; Prajapati S; Roney J; Abney J; Kleinman ME
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.