These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36650640)
1. Flame-Retardant and Recyclable Soybean Oil-Based Thermosets Enabled by the Dynamic Phosphate Ester and Tannic Acid. Chen Y; Zeng Y; Wu Y; Chen T; Qiu R; Liu W ACS Appl Mater Interfaces; 2023 Feb; 15(4):5963-5973. PubMed ID: 36650640 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of a Novel Flame Retardant Containing Phosphorus, Nitrogen, and Silicon and Its Application in Epoxy Resin. Fang M; Qian J; Wang X; Chen Z; Guo R; Shi Y ACS Omega; 2021 Mar; 6(10):7094-7105. PubMed ID: 33748623 [TBL] [Abstract][Full Text] [Related]
3. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification. Chen JH; Lu JH; Pu XL; Chen L; Wang YZ Chemosphere; 2022 May; 294():133778. PubMed ID: 35093421 [TBL] [Abstract][Full Text] [Related]
4. Versatile Phosphate Diester-Based Flame Retardant Vitrimers via Catalyst-Free Mixed Transesterification. Feng X; Li G ACS Appl Mater Interfaces; 2020 Dec; 12(51):57486-57496. PubMed ID: 33302619 [TBL] [Abstract][Full Text] [Related]
5. The Effects of a Macromolecular Charring Agent with Gas Phase and Condense Phase Synergistic Flame Retardant Capability on the Properties of PP/IFR Composites. Chen H; Wang J; Ni A; Ding A; Han X; Sun Z Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324716 [TBL] [Abstract][Full Text] [Related]
6. Mussel-Inspired General Interface Modification Method and Its Application in Polymer Reinforcement and as a Flame Retardant. Wang H; Zhou X; Abro M; Gao M; Deng M; Qin Z; Sun Y; Yue L; Zhang X ACS Omega; 2018 May; 3(5):4891-4898. PubMed ID: 31458705 [TBL] [Abstract][Full Text] [Related]
7. Thermal Stability and Flame Retardancy of a Cured Trifunctional Epoxy Resin with the Synergistic Effects of Silicon/Titanium. Cheng Z; Fang M; Chen X; Zhang Y; Wang Y; Li H; Qian J ACS Omega; 2020 Mar; 5(8):4200-4212. PubMed ID: 32149250 [TBL] [Abstract][Full Text] [Related]
8. Hexachlorocyclotriphosphazene Functionalized Graphene Oxide as a Highly Efficient Flame Retardant. Rhili K; Chergui S; ElDouhaibi AS; Siaj M ACS Omega; 2021 Mar; 6(9):6252-6260. PubMed ID: 33718715 [TBL] [Abstract][Full Text] [Related]
9. A novel polymer reactive flame retardant for the preparation of highly durable cotton fabrics. Lu Y; Zhao P; Chen Y; Lu Y; Zhang G Int J Biol Macromol; 2022 Dec; 223(Pt A):1394-1404. PubMed ID: 36356873 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins. Zhang H; Xu M; Li B J Nanosci Nanotechnol; 2016 Mar; 16(3):2811-21. PubMed ID: 27455714 [TBL] [Abstract][Full Text] [Related]
11. One-Step Synthesis of Highly Efficient Oligo(phenylphosphonic Dihydroxypropyl Silicone Oil) Flame Retardant for Polycarbonate. Qiao Y; Wang Y; Zou M; Xu D; Pan Y; Luo Z; Wang B Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31805702 [TBL] [Abstract][Full Text] [Related]
12. A Phosphorous-Based Bi-Functional Flame Retardant Based on Phosphaphenanthrene and Aluminum Hypophosphite for an Epoxy Thermoset. Xu B; Liu Y; Wei S; Zhao S; Qian L; Chen Y; Shan H; Zhang Q Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232556 [TBL] [Abstract][Full Text] [Related]
13. Cardanol and Eugenol Based Flame Retardant Epoxy Monomers for Thermostable Networks. Ecochard Y; Decostanzi M; Negrell C; Sonnier R; Caillol S Molecules; 2019 May; 24(9):. PubMed ID: 31083463 [TBL] [Abstract][Full Text] [Related]
14. A phosphorus-containing hyperbranched phthalocyanine flame retardant for epoxy resins. Zheng P; Wang R; Wang D; Peng X; Zhao Y; Liu Q Sci Rep; 2021 Sep; 11(1):17731. PubMed ID: 34489485 [TBL] [Abstract][Full Text] [Related]
15. Effect of flame retardants on mechanical and thermal properties of bio-based polyurethane rigid foams. Gong Q; Qin L; Yang L; Liang K; Wang N RSC Adv; 2021 Sep; 11(49):30860-30872. PubMed ID: 35498937 [TBL] [Abstract][Full Text] [Related]
16. Improved thermal properties of epoxy resin modified with polymethyl methacrylate-microencapsulated phosphorus-nitrogen-containing flame retardant. Qu L; Zhang C; Li P; Dai X; Xu T; Sui Y; Gu J; Dou Y RSC Adv; 2018 Aug; 8(52):29816-29829. PubMed ID: 35547319 [TBL] [Abstract][Full Text] [Related]
17. Cellulose-based light-management film exhibiting flame-retardant and thermal-healing properties. Li S; Cui B; Jia X; Wang W; Cui Y; Ding J; Yang C; Fang Y; Song Y; Zhang X Int J Biol Macromol; 2024 Apr; 265(Pt 1):130447. PubMed ID: 38458280 [TBL] [Abstract][Full Text] [Related]
18. High residue bio-based structural-functional integration epoxy and intrinsic flame retardant mechanism study. Zhou J; Heng Z; Zhang H; Chen Y; Zou H; Liang M RSC Adv; 2019 Dec; 9(71):41603-41615. PubMed ID: 35541599 [TBL] [Abstract][Full Text] [Related]
19. A bio-based phosphaphenanthrene-containing derivative modified epoxy thermosets with good flame retardancy, high mechanical properties and transparency. Peng W; Xu YX; Nie SB; Yang W RSC Adv; 2021 Sep; 11(49):30943-30954. PubMed ID: 35498916 [TBL] [Abstract][Full Text] [Related]
20. Sustainable Bio-Based Epoxy Resins with Tunable Thermal and Mechanic Properties and Superior Anti-Corrosion Performance. Teijido R; Ruiz-Rubio L; Lanceros-Méndez S; Zhang Q; Vilas-Vilela JL Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896424 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]