These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36650788)
1. Days-ahead water level forecasting using artificial neural networks for watersheds. Velasco LC; Bongat JF; Castillon C; Laurente J; Tabanao E Math Biosci Eng; 2023 Jan; 20(1):758-774. PubMed ID: 36650788 [TBL] [Abstract][Full Text] [Related]
2. Artificial Intelligence based accurately load forecasting system to forecast short and medium-term load demands. Butt FM; Hussain L; Mahmood A; Lone KJ Math Biosci Eng; 2020 Dec; 18(1):400-425. PubMed ID: 33525099 [TBL] [Abstract][Full Text] [Related]
3. Development of an Artificial Neural Network Algorithm Embedded in an On-Site Sensor for Water Level Forecasting. Liu CH; Yang TH; Wijaya OT Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366229 [TBL] [Abstract][Full Text] [Related]
4. Development of predictive models for determining enterococci levels at Gulf Coast beaches. Zhang Z; Deng Z; Rusch KA Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001 [TBL] [Abstract][Full Text] [Related]
5. Time series prediction of under-five mortality rates for Nigeria: comparative analysis of artificial neural networks, Holt-Winters exponential smoothing and autoregressive integrated moving average models. Adeyinka DA; Muhajarine N BMC Med Res Methodol; 2020 Dec; 20(1):292. PubMed ID: 33267817 [TBL] [Abstract][Full Text] [Related]
6. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study. Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932 [TBL] [Abstract][Full Text] [Related]
7. Artificial neural networks applied to forecasting time series. Montaño Moreno JJ; Palmer Pol A; Muñoz Gracia P Psicothema; 2011 Apr; 23(2):322-9. PubMed ID: 21504688 [TBL] [Abstract][Full Text] [Related]
8. A comparative study of data-driven models for runoff, sediment, and nitrate forecasting. Zamani MG; Nikoo MR; Rastad D; Nematollahi B J Environ Manage; 2023 Sep; 341():118006. PubMed ID: 37163836 [TBL] [Abstract][Full Text] [Related]
9. Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing. Makomere RS; Koech L; Rutto HL; Kiambi S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2024; 59(1):1-14. PubMed ID: 38374611 [TBL] [Abstract][Full Text] [Related]
10. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Chan WS; Recknagel F; Cao H; Park HD Water Res; 2007 May; 41(10):2247-55. PubMed ID: 17408719 [TBL] [Abstract][Full Text] [Related]
11. Predicting water quality in unmonitored watersheds using artificial neural networks. Kalin L; Isik S; Schoonover JE; Lockaby BG J Environ Qual; 2010; 39(4):1429-40. PubMed ID: 20830930 [TBL] [Abstract][Full Text] [Related]
12. Machine learning ensembles, neural network, hybrid and sparse regression approaches for weather based rainfed cotton yield forecast. Kashyap GR; Sridhara S; Manoj KN; Gopakkali P; Das B; Jha PK; Prasad PVV Int J Biometeorol; 2024 Jun; 68(6):1179-1197. PubMed ID: 38676745 [TBL] [Abstract][Full Text] [Related]
13. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents. Barba L; Rodríguez N; Montt C ScientificWorldJournal; 2014; 2014():152375. PubMed ID: 25243200 [TBL] [Abstract][Full Text] [Related]
15. Forecasting deaths of road traffic injuries in China using an artificial neural network. Qian Y; Zhang X; Fei G; Sun Q; Li X; Stallones L; Xiang H Traffic Inj Prev; 2020; 21(6):407-412. PubMed ID: 32500738 [No Abstract] [Full Text] [Related]
16. [Artificial neural network forecasting method in monitoring technique by spectrometric oil analysis]. Yang YW; Chen G; Yang YW; Chen G Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1339-43. PubMed ID: 16329517 [TBL] [Abstract][Full Text] [Related]
17. Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition. Wang WC; Chau KW; Qiu L; Chen YB Environ Res; 2015 May; 139():46-54. PubMed ID: 25684671 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the ability of an artificial neural network model to assess the variation of groundwater quality in an area of blackfoot disease in Taiwan. Kuo YM; Liu CW; Lin KH Water Res; 2004 Jan; 38(1):148-58. PubMed ID: 14630112 [TBL] [Abstract][Full Text] [Related]
19. Real-time reservoir operation using data mining techniques. Bozorg-Haddad O; Aboutalebi M; Ashofteh PS; Loáiciga HA Environ Monit Assess; 2018 Sep; 190(10):594. PubMed ID: 30232560 [TBL] [Abstract][Full Text] [Related]
20. Prediction of tropospheric ozone concentration using artificial neural networks at traffic and background urban locations in Novi Sad, Serbia. Malinović-Milićević S; Vyklyuk Y; Stanojević G; Radovanović MM; Doljak D; Ćurčić NB Environ Monit Assess; 2021 Jan; 193(2):84. PubMed ID: 33495931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]