These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36650789)

  • 1. Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures.
    Li Y; Zhao H; Wang K
    Math Biosci Eng; 2023 Jan; 20(1):775-806. PubMed ID: 36650789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and control of mosquito-borne diseases with Wolbachia and insecticides.
    Li Y; Liu X
    Theor Popul Biol; 2020 Apr; 132():82-91. PubMed ID: 31926932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia.
    Chinnathambi R; Rihan FA
    Math Biosci Eng; 2022 Aug; 19(11):11154-11171. PubMed ID: 36124585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population.
    Li Y; Liu X
    J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wolbachia wAlbB inhibit dengue and Zika infection in the mosquito Aedes aegypti with an Australian background.
    Hugo LE; Rašić G; Maynard AJ; Ambrose L; Liddington C; Thomas CJE; Nath NS; Graham M; Winterford C; Wimalasiri-Yapa BMCR; Xi Z; Beebe NW; Devine GJ
    PLoS Negl Trop Dis; 2022 Oct; 16(10):e0010786. PubMed ID: 36227923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control.
    Zhang X; Liu Q; Zhu H
    J Math Biol; 2020 Jul; 81(1):243-276. PubMed ID: 32458175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosquito Control Based on Pesticides and Endosymbiotic Bacterium Wolbachia.
    Hu L; Yang C; Hui Y; Yu J
    Bull Math Biol; 2021 Apr; 83(5):58. PubMed ID: 33847843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of a two-sex model for the population ecology of dengue mosquitoes in the presence of Wolbachia.
    Taghikhani R; Sharomi O; Gumel AB
    Math Biosci; 2020 Oct; 328():108426. PubMed ID: 32712316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Designing effective Wolbachia release programs for mosquito and arbovirus control.
    Ross PA
    Acta Trop; 2021 Oct; 222():106045. PubMed ID: 34273308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies to Mitigate Establishment under the
    Soh S; Ho SH; Ong J; Seah A; Dickens BS; Tan KW; Koo JR; Cook AR; Sim S; Tan CH; Ng LC; Lim JT
    Viruses; 2022 May; 14(6):. PubMed ID: 35746601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control.
    Zheng B; Liu X; Tang M; Xi Z; Yu J
    J Theor Biol; 2019 Jul; 472():95-109. PubMed ID: 30991073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Mosquito Population Suppression Model by Releasing Wolbachia-Infected Males.
    Liu Y; Yu J; Li J
    Bull Math Biol; 2022 Sep; 84(11):121. PubMed ID: 36112293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of large-scale deployment of
    Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL
    F1000Res; 2019; 8():1328. PubMed ID: 33447371
    [No Abstract]   [Full Text] [Related]  

  • 15. Effectiveness evaluation of mosquito suppression strategies on dengue transmission under changing temperature and precipitation.
    Liu K; Fang S; Li Q; Lou Y
    Acta Trop; 2024 May; 253():107159. PubMed ID: 38412904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size.
    Liu YF; Sun GW; Wang L; Guo ZM
    Math Biosci Eng; 2019 May; 16(5):4399-4414. PubMed ID: 31499668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of DENV serotype competition and co-infection on viral kinetics in Wolbachia-infected and uninfected Aedes aegypti mosquitoes.
    Novelo M; Audsley MD; McGraw EA
    Parasit Vectors; 2021 Jun; 14(1):314. PubMed ID: 34108021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models to assess the effects of non-identical sex ratio augmentations of Wolbachia-carrying mosquitoes on the control of dengue disease.
    Zhang X; Tang S; Liu Q; Cheke RA; Zhu H
    Math Biosci; 2018 May; 299():58-72. PubMed ID: 29530790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural Wolbachia infection in field-collected Anopheles and other mosquito species from Malaysia.
    Wong ML; Liew JWK; Wong WK; Pramasivan S; Mohamed Hassan N; Wan Sulaiman WY; Jeyaprakasam NK; Leong CS; Low VL; Vythilingam I
    Parasit Vectors; 2020 Aug; 13(1):414. PubMed ID: 32787974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations.
    Campo-Duarte DE; Vasilieva O; Cardona-Salgado D; Svinin M
    J Math Biol; 2018 Jun; 76(7):1907-1950. PubMed ID: 29429122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.