These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36650798)

  • 1. Applied machine learning for blood pressure estimation using a small, real-world electrocardiogram and photoplethysmogram dataset.
    Wong MKF; Hei H; Lim SZ; Ng EY
    Math Biosci Eng; 2023 Jan; 20(1):975-997. PubMed ID: 36650798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood Pressure Estimation Using Photoplethysmography Only: Comparison between Different Machine Learning Approaches.
    Khalid SG; Zhang J; Chen F; Zheng D
    J Healthc Eng; 2018; 2018():1548647. PubMed ID: 30425819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Schrödinger spectrum based continuous cuff-less blood pressure estimation using clinically relevant features from PPG signal and its second derivative.
    Sarkar S; Ghosh A
    Comput Biol Med; 2023 Nov; 166():107558. PubMed ID: 37806054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals.
    Zhang Q; Zhou D; Zeng X
    Biomed Eng Online; 2017 Feb; 16(1):23. PubMed ID: 28166774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms.
    Baker S; Xiang W; Atkinson I
    Comput Methods Programs Biomed; 2021 Aug; 207():106191. PubMed ID: 34077866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Features from the photoplethysmogram and the electrocardiogram for estimating changes in blood pressure.
    Finnegan E; Davidson S; Harford M; Watkinson P; Tarassenko L; Villarroel M
    Sci Rep; 2023 Jan; 13(1):986. PubMed ID: 36653426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cuff-less blood pressure estimation from photoplethysmography signal and electrocardiogram.
    Yao LP; Pan ZL
    Phys Eng Sci Med; 2021 Jun; 44(2):397-408. PubMed ID: 33738778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and validation of dual-point time-differentiated photoplethysmogram (2PPG) wearable for cuffless blood pressure estimation.
    Wong KFM; Huang W; Ee DYH; Ng EYK
    Comput Methods Programs Biomed; 2024 Aug; 253():108251. PubMed ID: 38824806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continual Learning for Cuffless Blood Pressure Measurement using PPG and ECG Signals.
    Zhang C; Shen Z; Ding X
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of invasive coronary perfusion pressure using electrocardiogram and Photoplethysmography in a porcine model of cardiac arrest.
    Jiang L; Chen S; Pan X; Zhang J; Yin X; Guo C; Sun M; Ding B; Zhai X; Li K; Wang J; Chen Y
    Comput Methods Programs Biomed; 2024 Sep; 254():108284. PubMed ID: 38924799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration-free blood pressure estimation based on a convolutional neural network.
    Cho J; Shin H; Choi A
    Psychophysiology; 2024 Apr; 61(4):e14480. PubMed ID: 37971153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-Time Cuffless Continuous Blood Pressure Estimation Using Deep Learning Model.
    Li YH; Harfiya LN; Purwandari K; Lin YD
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33007891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating blood pressure trends and the nocturnal dip from photoplethysmography.
    Radha M; de Groot K; Rajani N; Wong CCP; Kobold N; Vos V; Fonseca P; Mastellos N; Wark PA; Velthoven N; Haakma R; Aarts RM
    Physiol Meas; 2019 Feb; 40(2):025006. PubMed ID: 30699397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.
    Miao F; Fu N; Zhang YT; Ding XR; Hong X; He Q; Li Y
    IEEE J Biomed Health Inform; 2017 Nov; 21(6):1730-1740. PubMed ID: 28463207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques.
    Miao F; Wen B; Hu Z; Fortino G; Wang XP; Liu ZD; Tang M; Li Y
    Artif Intell Med; 2020 Aug; 108():101919. PubMed ID: 32972654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cuffless blood pressure estimation using chaotic features of photoplethysmograms and parallel convolutional neural network.
    Khodabakhshi MB; Eslamyeh N; Sadredini SZ; Ghamari M
    Comput Methods Programs Biomed; 2022 Nov; 226():107131. PubMed ID: 36137326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of cuffless blood pressure estimation method based on multiple physiological parameters.
    Zhang Y; Zhou C; Huang Z; Ye X
    Physiol Meas; 2021 Jun; 42(5):. PubMed ID: 33857923
    [No Abstract]   [Full Text] [Related]  

  • 18. Cuff-Less Blood Pressure Estimation From Photoplethysmography via Visibility Graph and Transfer Learning.
    Wang W; Mohseni P; Kilgore KL; Najafizadeh L
    IEEE J Biomed Health Inform; 2022 May; 26(5):2075-2085. PubMed ID: 34784289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characters available in photoplethysmogram for blood pressure estimation: beyond the pulse transit time.
    Li Y; Wang Z; Zhang L; Yang X; Song J
    Australas Phys Eng Sci Med; 2014 Jun; 37(2):367-76. PubMed ID: 24722801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Continuous Non-Invasive Blood Pressure Prediction Method Based on Deep Sparse Residual U-Net Combined with Improved Squeeze and Excitation Skip Connections.
    Lai K; Wang X; Cao C
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.