These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 36650800)
1. Stacking-BERT model for Chinese medical procedure entity normalization. Li L; Zhai Y; Gao J; Wang L; Hou L; Zhao J Math Biosci Eng; 2023 Jan; 20(1):1018-1036. PubMed ID: 36650800 [TBL] [Abstract][Full Text] [Related]
2. A study of entity-linking methods for normalizing Chinese diagnosis and procedure terms to ICD codes. Wang Q; Ji Z; Wang J; Wu S; Lin W; Li W; Ke L; Xiao G; Jiang Q; Xu H; Zhou Y J Biomed Inform; 2020 May; 105():103418. PubMed ID: 32298846 [TBL] [Abstract][Full Text] [Related]
3. BERT-based Ranking for Biomedical Entity Normalization. Ji Z; Wei Q; Xu H AMIA Jt Summits Transl Sci Proc; 2020; 2020():269-277. PubMed ID: 32477646 [TBL] [Abstract][Full Text] [Related]
4. Fine-Tuning Bidirectional Encoder Representations From Transformers (BERT)-Based Models on Large-Scale Electronic Health Record Notes: An Empirical Study. Li F; Jin Y; Liu W; Rawat BPS; Cai P; Yu H JMIR Med Inform; 2019 Sep; 7(3):e14830. PubMed ID: 31516126 [TBL] [Abstract][Full Text] [Related]
5. SiBERT: A Siamese-based BERT network for Chinese medical entities alignment. Ma Z; Zhao L; Li J; Xu X; Li J Methods; 2022 Sep; 205():133-139. PubMed ID: 35798258 [TBL] [Abstract][Full Text] [Related]
6. Application of Entity-BERT model based on neuroscience and brain-like cognition in electronic medical record entity recognition. Lu W; Jiang J; Shi Y; Zhong X; Gu J; Huangfu L; Gong M Front Neurosci; 2023; 17():1259652. PubMed ID: 37799340 [TBL] [Abstract][Full Text] [Related]
7. Named entity recognition of Chinese electronic medical records based on a hybrid neural network and medical MC-BERT. Chen P; Zhang M; Yu X; Li S BMC Med Inform Decis Mak; 2022 Dec; 22(1):315. PubMed ID: 36457119 [TBL] [Abstract][Full Text] [Related]
8. Extracting clinical named entity for pituitary adenomas from Chinese electronic medical records. Fang A; Hu J; Zhao W; Feng M; Fu J; Feng S; Lou P; Ren H; Chen X BMC Med Inform Decis Mak; 2022 Mar; 22(1):72. PubMed ID: 35321705 [TBL] [Abstract][Full Text] [Related]
9. Multi-Level Representation Learning for Chinese Medical Entity Recognition: Model Development and Validation. Zhang Z; Zhu L; Yu P JMIR Med Inform; 2020 May; 8(5):e17637. PubMed ID: 32364514 [TBL] [Abstract][Full Text] [Related]
10. Analyzing transfer learning impact in biomedical cross-lingual named entity recognition and normalization. Rivera-Zavala RM; Martínez P BMC Bioinformatics; 2021 Dec; 22(Suppl 1):601. PubMed ID: 34920703 [TBL] [Abstract][Full Text] [Related]
11. An attention-based deep learning model for clinical named entity recognition of Chinese electronic medical records. Li L; Zhao J; Hou L; Zhai Y; Shi J; Cui F BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):235. PubMed ID: 31801540 [TBL] [Abstract][Full Text] [Related]
12. Semantic Textual Similarity in Japanese Clinical Domain Texts Using BERT. Mutinda FW; Yada S; Wakamiya S; Aramaki E Methods Inf Med; 2021 Jun; 60(S 01):e56-e64. PubMed ID: 34237783 [TBL] [Abstract][Full Text] [Related]
13. Unified Medical Language System resources improve sieve-based generation and Bidirectional Encoder Representations from Transformers (BERT)-based ranking for concept normalization. Xu D; Gopale M; Zhang J; Brown K; Begoli E; Bethard S J Am Med Inform Assoc; 2020 Oct; 27(10):1510-1519. PubMed ID: 32719838 [TBL] [Abstract][Full Text] [Related]
14. A Fine-Tuned Bidirectional Encoder Representations From Transformers Model for Food Named-Entity Recognition: Algorithm Development and Validation. Stojanov R; Popovski G; Cenikj G; Koroušić Seljak B; Eftimov T J Med Internet Res; 2021 Aug; 23(8):e28229. PubMed ID: 34383671 [TBL] [Abstract][Full Text] [Related]
15. Extracting comprehensive clinical information for breast cancer using deep learning methods. Zhang X; Zhang Y; Zhang Q; Ren Y; Qiu T; Ma J; Sun Q Int J Med Inform; 2019 Dec; 132():103985. PubMed ID: 31627032 [TBL] [Abstract][Full Text] [Related]
16. A BIGRU-Based Stacked Attention Network for Biomedical Named Entity Recognition with Chinese EMRs. Chen JQ; Zhu ZC; Zhang F; Zeng K; Jiang HZ; Cheng ZN Stud Health Technol Inform; 2023 Nov; 308():757-767. PubMed ID: 38007808 [TBL] [Abstract][Full Text] [Related]
17. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts. Mao Y; Fung KW J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614 [TBL] [Abstract][Full Text] [Related]
18. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
19. Korean clinical entity recognition from diagnosis text using BERT. Kim YM; Lee TH BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 7):242. PubMed ID: 32998724 [TBL] [Abstract][Full Text] [Related]
20. Automatic SNOMED CT coding of Chinese clinical terms via attention-based semantic matching. Chen Y; Hu D; Li M; Duan H; Lu X Int J Med Inform; 2022 Mar; 159():104676. PubMed ID: 34990940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]