These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36650818)

  • 21. Multi-scroll hidden attractor in memristive HR neuron model under electromagnetic radiation and its applications.
    Zhang S; Zheng J; Wang X; Zeng Z
    Chaos; 2021 Jan; 31(1):011101. PubMed ID: 33754761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the chaotic pole of attraction for Hindmarsh-Rose neuron dynamics with external current input.
    Doungmo Goufo EF; Tabi CB
    Chaos; 2019 Feb; 29(2):023104. PubMed ID: 30823721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Asymmetry in electrical coupling between neurons alters multistable firing behavior.
    Pisarchik AN; Jaimes-Reátegui R; García-Vellisca MA
    Chaos; 2018 Mar; 28(3):033605. PubMed ID: 29604635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects.
    He Z; Li C; Chen L; Cao Z
    Neural Netw; 2020 Jan; 121():497-511. PubMed ID: 31655446
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boundary dynamics of a non-smooth memristive Hindmarsh-Rose neuron system.
    Min F; Rui Z
    Chaos; 2022 Oct; 32(10):103117. PubMed ID: 36319297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chaotic itinerancy as a mechanism of irregular changes between synchronization and desynchronization in a neural network.
    Tsuda I; Fujii H; Tadokoro S; Yasuoka T; Yamaguti Y
    J Integr Neurosci; 2004 Jun; 3(2):159-82. PubMed ID: 15285053
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudo-Lyapunov exponents and predictability of Hodgkin-Huxley neuronal network dynamics.
    Sun Y; Zhou D; Rangan AV; Cai D
    J Comput Neurosci; 2010 Apr; 28(2):247-66. PubMed ID: 20020192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synchronizing Hindmarsh-Rose neurons over Newman-Watts networks.
    Jalili M
    Chaos; 2009 Sep; 19(3):033103. PubMed ID: 19791983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An artificial chaotic spiking neuron inspired by spiral ganglion cell: paralleled spike encoding, theoretical analysis, and electronic circuit implementation.
    Torikai H; Nishigami T
    Neural Netw; 2009; 22(5-6):664-73. PubMed ID: 19595567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detailed numerical investigation of the dissipative stochastic mechanics based neuron model.
    Güler M
    J Comput Neurosci; 2008 Oct; 25(2):211-27. PubMed ID: 18259849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State-dependent effects of Na channel noise on neuronal burst generation.
    Rowat PF; Elson RC
    J Comput Neurosci; 2004; 16(2):87-112. PubMed ID: 14758060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. When Noise meets Chaos: Stochastic Resonance in Neurochaos Learning.
    N B H; Nagaraj N
    Neural Netw; 2021 Nov; 143():425-435. PubMed ID: 34252737
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analytical predictions of stable and unstable firings to chaos in a Hindmarsh-Rose neuron system.
    Xu Y; Wu Y
    Chaos; 2022 Nov; 32(11):113113. PubMed ID: 36456342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamical behaviors for discontinuous and delayed neural networks in the framework of Filippov differential inclusions.
    Huang L; Cai Z; Zhang L; Duan L
    Neural Netw; 2013 Dec; 48():180-94. PubMed ID: 24055960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ghost attractors in blinking Lorenz and Hindmarsh-Rose systems.
    Barabash NV; Levanova TA; Belykh VN
    Chaos; 2020 Aug; 30(8):081105. PubMed ID: 32872838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chimera states in bursting neurons.
    Bera BK; Ghosh D; Lakshmanan M
    Phys Rev E; 2016 Jan; 93(1):012205. PubMed ID: 26871071
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental observation of transition from chaotic bursting to chaotic spiking in a neural pacemaker.
    Gu H
    Chaos; 2013 Jun; 23(2):023126. PubMed ID: 23822491
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chaotic bursting as chaotic itinerancy in coupled neural oscillators.
    Han SK; Postnov DE
    Chaos; 2003 Sep; 13(3):1105-9. PubMed ID: 12946203
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators.
    Selverston AI; Rabinovich MI; Abarbanel HD; Elson R; Szücs A; Pinto RD; Huerta R; Varona P
    J Physiol Paris; 2000; 94(5-6):357-74. PubMed ID: 11165906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-delay effect on the bursting of the synchronized state of coupled Hindmarsh-Rose neurons.
    Zheng YG; Wang ZH
    Chaos; 2012 Dec; 22(4):043127. PubMed ID: 23278062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.