These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36651051)

  • 1. Macroevolution of protective coloration across caterpillars reflects relationships with host plants.
    Robinson ML; Weber MG; Freedman MG; Jordan E; Ashlock SR; Yonenaga J; Strauss SY
    Proc Biol Sci; 2023 Jan; 290(1991):20222293. PubMed ID: 36651051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The signal environment is more important than diet or chemical specialization in the evolution of warning coloration.
    Prudic KL; Oliver JC; Sperling FA
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19381-6. PubMed ID: 18029450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant coloration undermines herbivorous insect camouflage.
    Lev-Yadun S; Dafni A; Flaishman MA; Inbar M; Izhaki I; Katzir G; Ne'eman G
    Bioessays; 2004 Oct; 26(10):1126-30. PubMed ID: 15382135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying camouflage: how to predict detectability from appearance.
    Troscianko J; Skelhorn J; Stevens M
    BMC Evol Biol; 2017 Jan; 17(1):7. PubMed ID: 28056761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constrained camouflage facilitates the evolution of conspicuous warning coloration.
    Merilaita S; Tullberg BS
    Evolution; 2005 Jan; 59(1):38-45. PubMed ID: 15792225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Appearance before performance? Nutritional constraints on life-history traits, but not warning signal expression in aposematic moths.
    Lindstedt C; Suisto K; Mappes J
    J Anim Ecol; 2020 Feb; 89(2):494-505. PubMed ID: 31538333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution and genetics of lepidopteran egg and caterpillar coloration.
    Tong X; Qiao L; Luo J; Ding X; Wu S
    Curr Opin Genet Dev; 2021 Aug; 69():140-146. PubMed ID: 34030080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ant-caterpillar antagonism at the community level: interhabitat variation of tritrophic interactions in a neotropical savanna.
    Sendoya SF; Oliveira PS
    J Anim Ecol; 2015 Mar; 84(2):442-52. PubMed ID: 25251455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian predators taste-reject aposematic prey on the basis of their chemical defence.
    Skelhorn J; Rowe C
    Biol Lett; 2006 Sep; 2(3):348-50. PubMed ID: 17148400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predatory birds and ants partition caterpillar prey by body size and diet breadth.
    Singer MS; Clark RE; Lichter-Marck IH; Johnson ER; Mooney KA
    J Anim Ecol; 2017 Oct; 86(6):1363-1371. PubMed ID: 28686298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conspicuous coloration of toxin-resistant predators implicates additional trophic interactions in a predator-prey arms race.
    Hague MTJ; Miller LE; Stokes AN; Feldman CR; Brodie ED; Brodie ED
    Mol Ecol; 2023 Aug; 32(16):4482-4496. PubMed ID: 36336815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspective: the evolution of warning coloration is not paradoxical.
    Marples NM; Kelly DJ; Thomas RJ
    Evolution; 2005 May; 59(5):933-40. PubMed ID: 16136793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coevolutionary arms race versus host defense chase in a tropical herbivore-plant system.
    Endara MJ; Coley PD; Ghabash G; Nicholls JA; Dexter KG; Donoso DA; Stone GN; Pennington RT; Kursar TA
    Proc Natl Acad Sci U S A; 2017 Sep; 114(36):E7499-E7505. PubMed ID: 28827317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration.
    Servedio MR
    Evolution; 2000 Jun; 54(3):751-63. PubMed ID: 10937250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overcoming the detectability costs of symmetrical coloration.
    Wainwright JB; Scott-Samuel NE; Cuthill IC
    Proc Biol Sci; 2020 Jan; 287(1918):20192664. PubMed ID: 31937221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Host plants influence parasitism of forest caterpillars.
    Lill JT; Marquis RJ; Ricklefs RE
    Nature; 2002 May; 417(6885):170-3. PubMed ID: 12000959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The evolution of conspicuousness in frogs: When to signal toxicity?
    Roberts SM; Stuart-Fox D; Medina I
    J Evol Biol; 2022 Nov; 35(11):1455-1464. PubMed ID: 36129907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explaining the evolution of warning coloration: secreted secondary defence chemicals may facilitate the evolution of visual aposematic signals.
    Gohli J; Högstedt G
    PLoS One; 2009 Jun; 4(6):e5779. PubMed ID: 19492013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local adaptation and divergence in colour signal conspicuousness between monomorphic and polymorphic lineages in a lizard.
    McLean CA; Moussalli A; Stuart-Fox D
    J Evol Biol; 2014 Dec; 27(12):2654-64. PubMed ID: 25330209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why are animals conspicuously colored? Evolution of sexual versus warning signals in land vertebrates.
    Emberts Z; Wiens JJ
    Evolution; 2022 Dec; 76(12):2879-2892. PubMed ID: 36221224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.