These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Exploring polymorphism in a palatable prey: predation risk and frequency dependence in relation to distinct levels of conspicuousness. Poloni R; Dhennin M; Mappes J; Joron M; Nokelainen O Evol Lett; 2024 Jun; 8(3):406-415. PubMed ID: 38818419 [TBL] [Abstract][Full Text] [Related]
23. Aposematism: what should our starting point be? Speed MP; Ruxton GD Proc Biol Sci; 2005 Feb; 272(1561):431-8. PubMed ID: 15734698 [TBL] [Abstract][Full Text] [Related]
25. Coevolution of group-living and aposematism in caterpillars: warning colouration may facilitate the evolution from group-living to solitary habits. Wang L; Cornell SJ; Speed MP; Arbuckle K BMC Ecol Evol; 2021 Feb; 21(1):25. PubMed ID: 33583398 [TBL] [Abstract][Full Text] [Related]
26. Honest signaling and the uses of prey coloration. Lee TJ; Speed MP; Stephens PA Am Nat; 2011 Jul; 178(1):E1-9. PubMed ID: 21670571 [TBL] [Abstract][Full Text] [Related]
27. Ontogenetic colour change and the evolution of aposematism: a case study in panic moth caterpillars. Grant JB J Anim Ecol; 2007 May; 76(3):439-47. PubMed ID: 17439461 [TBL] [Abstract][Full Text] [Related]
30. Avian predators attack aposematic prey more forcefully when they are part of an aggregation. Skelhorn J; Ruxton GD Biol Lett; 2006 Dec; 2(4):488-90. PubMed ID: 17148269 [TBL] [Abstract][Full Text] [Related]
31. Correlated evolution of conspicuous coloration and body size in poison frogs (Dendrobatidae). Hagman M; Forsman A Evolution; 2003 Dec; 57(12):2904-10. PubMed ID: 14761068 [TBL] [Abstract][Full Text] [Related]
32. Comparative and experimental studies on the relationship between body size and countershading in caterpillars. Hwang Y; Yoo S; Park C; Kang C J Evol Biol; 2023 Jul; 36(7):1032-1039. PubMed ID: 36737844 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary transitions from camouflage to aposematism: Hidden signals play a pivotal role. Loeffler-Henry K; Kang C; Sherratt TN Science; 2023 Mar; 379(6637):1136-1140. PubMed ID: 36927015 [TBL] [Abstract][Full Text] [Related]
34. Costs and benefits of plant allelochemicals in herbivore diet in a multi enemy world. Reudler JH; Lindstedt C; Pakkanen H; Lehtinen I; Mappes J Oecologia; 2015 Dec; 179(4):1147-58. PubMed ID: 26296333 [TBL] [Abstract][Full Text] [Related]
35. Artificial neural networks and the study of evolution of prey coloration. Merilaita S Philos Trans R Soc Lond B Biol Sci; 2007 Mar; 362(1479):421-30. PubMed ID: 17255017 [TBL] [Abstract][Full Text] [Related]
37. Generalist camouflage can be more successful than microhabitat specialisation in natural environments. Briolat ES; Arenas LM; Hughes AE; Liggins E; Stevens M BMC Ecol Evol; 2021 Aug; 21(1):151. PubMed ID: 34344323 [TBL] [Abstract][Full Text] [Related]
38. Frequency-dependent taste-rejection by avian predation may select for defence chemical polymorphisms in aposematic prey. Skelhorn J; Rowe C Biol Lett; 2005 Dec; 1(4):500-3. PubMed ID: 17148243 [TBL] [Abstract][Full Text] [Related]
39. Cryptic differences in colour among Müllerian mimics: how can the visual capacities of predators and prey shape the evolution of wing colours? Llaurens V; Joron M; Théry M J Evol Biol; 2014 Mar; 27(3):531-40. PubMed ID: 24444083 [TBL] [Abstract][Full Text] [Related]
40. Can't tell the caterpillars from the trees: countershading enhances survival in a woodland. Rowland HM; Cuthill IC; Harvey IF; Speed MP; Ruxton GD Proc Biol Sci; 2008 Nov; 275(1651):2539-45. PubMed ID: 18700207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]