BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36651084)

  • 1. Zebrafish and medaka T1R (taste receptor type 1) proteins mediate highly sensitive recognition of l-proline.
    Goda R; Watanabe S; Misaka T
    FEBS Open Bio; 2023 Mar; 13(3):468-477. PubMed ID: 36651084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two families of candidate taste receptors in fishes.
    Ishimaru Y; Okada S; Naito H; Nagai T; Yasuoka A; Matsumoto I; Abe K
    Mech Dev; 2005 Dec; 122(12):1310-21. PubMed ID: 16274966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ligands for fish taste receptors.
    Oike H; Nagai T; Furuyama A; Okada S; Aihara Y; Ishimaru Y; Marui T; Matsumoto I; Misaka T; Abe K
    J Neurosci; 2007 May; 27(21):5584-92. PubMed ID: 17522303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical range recognized by the ligand-binding domain in a representative amino acid-sensing taste receptor, T1r2a/T1r3, from medaka fish.
    Ishida H; Yasui N; Yamashita A
    PLoS One; 2024; 19(3):e0300981. PubMed ID: 38517842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic labeling of taste receptor cells in model fish under the control of the 5'-upstream region of medaka phospholipase C-beta 2 gene.
    Aihara Y; Yasuoka A; Yoshida Y; Ohmoto M; Shimizu-Ibuka A; Misaka T; Furutani-Seiki M; Matsumoto I; Abe K
    Gene Expr Patterns; 2007 Jan; 7(1-2):149-57. PubMed ID: 16920036
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Aida H; Morita R; Shigeta Y; Harada R
    Phys Chem Chem Phys; 2021 Sep; 23(36):20398-20405. PubMed ID: 34494045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of a taste-blind medaka fish and quantitative assay of its preference-aversion behavior.
    Aihara Y; Yasuoka A; Iwamoto S; Yoshida Y; Misaka T; Abe K
    Genes Brain Behav; 2008 Nov; 7(8):924-32. PubMed ID: 18700838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential scanning fluorimetric analysis of the amino-acid binding to taste receptor using a model receptor protein, the ligand-binding domain of fish T1r2a/T1r3.
    Yoshida T; Yasui N; Kusakabe Y; Ito C; Akamatsu M; Yamashita A
    PLoS One; 2019; 14(10):e0218909. PubMed ID: 31584955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological responses to sugars and amino acids in the nucleus of the solitary tract of type 1 taste receptor double-knockout mice.
    Kalyanasundar B; Blonde GD; Spector AC; Travers SP
    J Neurophysiol; 2020 Feb; 123(2):843-859. PubMed ID: 31913749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The taste system of small fish species.
    Okada S
    Biosci Biotechnol Biochem; 2015; 79(7):1039-43. PubMed ID: 25776867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A vertebrate-wide catalogue of T1R receptors reveals diversity in taste perception.
    Nishihara H; Toda Y; Kuramoto T; Kamohara K; Goto A; Hoshino K; Okada S; Kuraku S; Okabe M; Ishimaru Y
    Nat Ecol Evol; 2024 Jan; 8(1):111-120. PubMed ID: 38093021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of taste sentinels, T1R, T2R, and PLCβ2, on the passageway for olfactory signals in zebrafish.
    Birdal G; D'Gama PP; Jurisch-Yaksi N; Korsching SI
    Chem Senses; 2023 Jan; 48():. PubMed ID: 37843175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for perception of diverse chemical substances by T1r taste receptors.
    Nuemket N; Yasui N; Kusakabe Y; Nomura Y; Atsumi N; Akiyama S; Nango E; Kato Y; Kaneko MK; Takagi J; Hosotani M; Yamashita A
    Nat Commun; 2017 May; 8():15530. PubMed ID: 28534491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes.
    Parmar MB; Shams R; Wright JM
    Mar Genomics; 2013 Sep; 11():1-10. PubMed ID: 23632098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of zebrafish and medaka vitellogenin genes and comparison of their expression in response to 17beta-estradiol.
    Tong Y; Shan T; Poh YK; Yan T; Wang H; Lam SH; Gong Z
    Gene; 2004 Mar; 328():25-36. PubMed ID: 15019981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of melanocortin receptors in teleost fish: the melanocortin type 1 receptor.
    Selz Y; Braasch I; Hoffmann C; Schmidt C; Schultheis C; Schartl M; Volff JN
    Gene; 2007 Oct; 401(1-2):114-22. PubMed ID: 17707598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presence of two tumor necrosis factor (tnf)-α homologs on different chromosomes of zebrafish (Danio rerio) and medaka (Oryzias latipes).
    Kinoshita S; Biswas G; Kono T; Hikima J; Sakai M
    Mar Genomics; 2014 Feb; 13():1-9. PubMed ID: 24269726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Japanese medaka as a model for studying the relaxin family genes involved in neuroendocrine regulation: Insights from the expression of fish-specific rln3 and insl5 and rxfp3/4-type receptor paralogues.
    Alnafea H; Vahkal B; Zelmer CK; Yegorov S; Bogerd J; Good SV
    Mol Cell Endocrinol; 2019 May; 487():2-11. PubMed ID: 30703485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small teleost fish provide new insights into human skeletal diseases.
    Witten PE; Harris MP; Huysseune A; Winkler C
    Methods Cell Biol; 2017; 138():321-346. PubMed ID: 28129851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential techniques for introducing medaka to a zebrafish laboratory--towards the combined use of medaka and zebrafish for further genetic dissection of the function of the vertebrate genome.
    Porazinski SR; Wang H; Furutani-Seiki M
    Methods Mol Biol; 2011; 770():211-41. PubMed ID: 21805266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.