These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36651128)

  • 1. Combinatorial Drug Screening Based on Massive 3D Tumor Cultures Using Micropatterned Array Chips.
    Fu W; Sun M; Zhang J; Xuanyuan T; Liu X; Zhou Y; Liu W
    Anal Chem; 2023 Jan; 95(4):2504-2512. PubMed ID: 36651128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile construction of a 3D tumor model with multiple biomimetic characteristics using a micropatterned chip for large-scale chemotherapy investigation.
    Sun M; Zhang J; Fu W; Xuanyuan T; Liu W
    Lab Chip; 2023 May; 23(9):2161-2174. PubMed ID: 36943157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed micro-scale force gauge arrays to improve human cardiac tissue maturation and enable high throughput drug testing.
    Ma X; Dewan S; Liu J; Tang M; Miller KL; Yu C; Lawrence N; McCulloch AD; Chen S
    Acta Biomater; 2019 Sep; 95():319-327. PubMed ID: 30576862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale investigation of single cell activities and response dynamics in a microarray chip with a microfluidics-fabricated microporous membrane.
    Han K; Sun M; Zhang J; Fu W; Hu R; Liu D; Liu W
    Analyst; 2021 Jul; 146(13):4303-4313. PubMed ID: 34105525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering a Brain Cancer Chip for High-throughput Drug Screening.
    Fan Y; Nguyen DT; Akay Y; Xu F; Akay M
    Sci Rep; 2016 May; 6():25062. PubMed ID: 27151082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Antitumor Screening Based on Heterotypic 3D Tumors Using an Integrated Microfluidic Platform.
    Liu W; Sun M; Han K; Wang J
    Anal Chem; 2019 Nov; 91(21):13601-13610. PubMed ID: 31525029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel and large-scale antitumor investigation using stable chemical gradient and heterotypic three-dimensional tumor coculture in a multi-layered microfluidic device.
    Liu W; Hu R; Han K; Sun M; Liu D; Zhang J; Wang J
    Biotechnol J; 2021 Oct; 16(10):e2000655. PubMed ID: 34218506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mask-free fabrication of a versatile microwell chip for multidimensional cellular analysis and drug screening.
    Yang W; Yu H; Li G; Wei F; Wang Y; Liu L
    Lab Chip; 2017 Dec; 17(24):4243-4252. PubMed ID: 29152631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D cell cultures toward quantitative high-throughput drug screening.
    Wang Y; Jeon H
    Trends Pharmacol Sci; 2022 Jul; 43(7):569-581. PubMed ID: 35504760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-Enabled Print-to-Screen Platform for High-Throughput Screening of Combinatorial Chemotherapy.
    Ding Y; Li J; Xiao W; Xiao K; Lee J; Bhardwaj U; Zhu Z; Digiglio P; Yang G; Lam KS; Pan T
    Anal Chem; 2015 Oct; 87(20):10166-71. PubMed ID: 26334956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multilayer architecture microfluidic network array for combinatorial drug testing on 3D-cultured cells.
    Chang HC; Lin CH; Juang D; Wu HW; Lee CY; Chen C; Hsu CH
    Biofabrication; 2019 Jun; 11(3):035024. PubMed ID: 31051482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active fluidic chip produced using 3D-printing for combinatorial therapeutic screening on liver tumor spheroid.
    Feng Y; Wang B; Tian Y; Chen H; Liu Y; Fan H; Wang K; Zhang C
    Biosens Bioelectron; 2020 Mar; 151():111966. PubMed ID: 31999576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated High-Throughput Screening (HTS) Spotter for 3D Tumor Spheroid Formation.
    Jeong MH; Kim I; Park K; Ku B; Lee DW; Park KR; Jeon SY; Kim JE
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Controllable Cell Array Printing Technique on Microfluidic Chips.
    Mi S; Yang S; Liu T; Du Z; Xu Y; Li B; Sun W
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2512-2520. PubMed ID: 30624208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superhydrophobic chips for cell spheroids high-throughput generation and drug screening.
    Oliveira MB; Neto AI; Correia CR; Rial-Hermida MI; Alvarez-Lorenzo C; Mano JF
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9488-95. PubMed ID: 24865973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D bioprinting for drug discovery and development in pharmaceutics.
    Peng W; Datta P; Ayan B; Ozbolat V; Sosnoski D; Ozbolat IT
    Acta Biomater; 2017 Jul; 57():26-46. PubMed ID: 28501712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models.
    Parrish J; Lim KS; Baer K; Hooper GJ; Woodfield TBF
    Lab Chip; 2018 Sep; 18(18):2757-2775. PubMed ID: 30117514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.