These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36651291)

  • 1. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation.
    Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G
    J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation.
    Man Z; Safaei J; Zhang Z; Wang Y; Zhou D; Li P; Zhang X; Jiang L; Wang G
    J Am Chem Soc; 2021 Oct; 143(39):16206-16216. PubMed ID: 34570466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-inspired Double Angstrom-Scale Confinement in Ti-deficient Ti
    Liu C; Ye C; Zhang T; Tang J; Mao K; Chen L; Xue L; Sun J; Zhang W; Wang X; Xiong P; Wang G; Zhu J
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202315947. PubMed ID: 38059770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion.
    Awati A; Yang R; Shi T; Zhou S; Zhang X; Zeng H; Lv Y; Liang K; Xie L; Zhu D; Liu M; Kong B
    Angew Chem Int Ed Engl; 2024 May; ():e202407491. PubMed ID: 38735853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic Two-Dimensional MoS
    Zhu C; Liu P; Niu B; Liu Y; Xin W; Chen W; Kong XY; Zhang Z; Jiang L; Wen L
    J Am Chem Soc; 2021 Feb; 143(4):1932-1940. PubMed ID: 33455164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion.
    Zhu C; Xu L; Liu Y; Liu J; Wang J; Sun H; Lan YQ; Wang C
    Nat Commun; 2024 May; 15(1):4213. PubMed ID: 38760369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance osmotic energy harvesting enabled by the synergism of space and surface charge in two-dimensional nanofluidic membranes.
    Xiao T; Li X; Lei W; Lu B; Liu Z; Zhai J
    J Colloid Interface Sci; 2024 Jun; 673():365-372. PubMed ID: 38878371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting.
    Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L
    Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous CNF/MoO
    Zheng M; Liu P; Yan P; Zhou T; Lin X; Li X; Wen L; Xu Q
    Mater Horiz; 2024 Apr; ():. PubMed ID: 38686603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators.
    Zhang Z; Yang S; Zhang P; Zhang J; Chen G; Feng X
    Nat Commun; 2019 Jul; 10(1):2920. PubMed ID: 31266937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation promoted osmotic energy conversion in black phosphorus membranes.
    Zhang Z; Zhang P; Yang S; Zhang T; Löffler M; Shi H; Lohe MR; Feng X
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13959-13966. PubMed ID: 32513735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting.
    Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting.
    Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L
    Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oppositely Charged Ti
    Ding L; Xiao D; Lu Z; Deng J; Wei Y; Caro J; Wang H
    Angew Chem Int Ed Engl; 2020 May; 59(22):8720-8726. PubMed ID: 31950586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-natural 2D nanofluidics as highly-efficient osmotic energy generators.
    Tang J; Wang Y; Yang H; Zhang Q; Wang C; Li L; Zheng Z; Jin Y; Wang H; Gu Y; Zuo T
    Nat Commun; 2024 Apr; 15(1):3649. PubMed ID: 38684671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of metal-organic framework/cellulose nanofibers-based hybrid membranes and their ion transport property for efficient osmotic energy conversion.
    Fu W; Zhang J; Zhang Q; Ahmad M; Sun Z; Li Z; Zhu Y; Zhou Y; Wang S
    Int J Biol Macromol; 2024 Feb; 257(Pt 1):128546. PubMed ID: 38061510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting.
    Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y
    Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.