These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36652057)

  • 21. On-line solid-phase extraction liquid chromatography-continuous flow frit fast atom bombardment mass spectrometric and tandem mass spectrometric determination of hydrolysis products of nerve agents alkyl methylphosphonic acids by p-bromophenacyl derivatization.
    Katagi M; Tatsuno M; Nishikawa M; Tsuchihashi H
    J Chromatogr A; 1999 Feb; 833(2):169-79. PubMed ID: 10081830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Benzyl trichloroacetimidates as derivatizing agents for phosphonic acids related to nerve agents by EI-GC-MS during OPCW proficiency test scenarios.
    Subramanian A; Rosales JA; Leif RN; Valdez CA
    Sci Rep; 2022 Dec; 12(1):21299. PubMed ID: 36494565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Derivatization of organophosphorus nerve agent degradation products for gas chromatography with ICPMS and TOF-MS detection.
    Richardson DD; Caruso JA
    Anal Bioanal Chem; 2007 Jun; 388(4):809-23. PubMed ID: 17356819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of chemical warfare agent degradation products in beverages by liquid chromatography tandem mass spectrometry.
    Owens J; Koester C
    J Agric Food Chem; 2009 Sep; 57(18):8227-35. PubMed ID: 19685865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of nerve agent metabolites in human urine by femtosecond laser ionization mass spectrometry using 2-(bromomethyl)naphthalene as a derivatizing reagent.
    Son VV; Nakamura H; Imasaka T; Imasaka T
    Anal Chim Acta; 2019 Sep; 1069():82-88. PubMed ID: 31084744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unambiguous identification and determination of A234-Novichok nerve agent biomarkers in biological fluids using GC-MS/MS and LC-MS/MS.
    Mirbabaei F; Mohammad-Khah A; Naseri MT; Babri M; Faraz SM; Hosseini SE; Ashrafi D
    Anal Bioanal Chem; 2022 May; 414(11):3429-3442. PubMed ID: 35190842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of degradation products of nitrogen mustards via hydrophilic interaction liquid chromatography-tandem mass spectrometry.
    Otsuka M; Miyaguchi H; Uchiyama M
    J Chromatogr A; 2019 Sep; 1602():199-205. PubMed ID: 31109745
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Untargeted and targeted analysis of sarin poisoning biomarkers in rat urine by liquid chromatography and tandem mass spectrometry.
    Vokuev MF; Baygildiev ТМ; Plyushchenko IV; Ikhalaynen YA; Ogorodnikov RL; Solontsov IK; Braun АV; Savelieva EI; Rуbalchenko IV; Rodin IA
    Anal Bioanal Chem; 2021 Nov; 413(28):6973-6985. PubMed ID: 34549323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Determination of ten aminoglycoside residues in eggs by mixed-mode ion exchange liquid chromatography-tandem mass spectrometry].
    Wei L; Xue X; Wu C; Ding Y; Lu L; Wang J; Liu Y
    Se Pu; 2021 Dec; 39(12):1374-1381. PubMed ID: 34812011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of the persistence of nerve agent degradation analytes on surfaces through wipe sampling and detection with ultrahigh performance liquid chromatography-tandem mass spectrometry.
    Willison SA
    Anal Chem; 2015 Jan; 87(2):1034-41. PubMed ID: 25495198
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring of hydrolysis products of organophosphorus nerve agents in plant material and soil by liquid chromatography-tandem mass spectrometry.
    Vokuev M; Baygildiev T; Braun A; Frolova A; Rybalchenko I; Rodin I
    J Chromatogr A; 2022 Dec; 1685():463604. PubMed ID: 36334562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of nitrogen mustard degradation products via post-pentafluorobenzoylation liquid chromatography-tandem mass spectrometry.
    Otsuka M; Miyaguchi H; Uchiyama M
    J Chromatogr A; 2020 Aug; 1625():461306. PubMed ID: 32709349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient derivatization of methylphosphonic and aminoethylsulfonic acids related to nerve agents simultaneously in soils using trimethyloxonium tetrafluoroborate for their enhanced, qualitative detection and identification by EI-GC-MS and GC-FPD.
    Valdez CA; Marchioretto MK; Leif RN; Hok S
    Forensic Sci Int; 2018 Jul; 288():159-168. PubMed ID: 29753153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On-line solid phase extraction-liquid chromatography-mass spectrometry for trace determination of nerve agent degradation products in water samples.
    Røen BT; Sellevåg SR; Lundanes E
    Anal Chim Acta; 2013 Jan; 761():109-16. PubMed ID: 23312321
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of S-2-(N,N-diisopropylaminoethyl)- and S-2-(N,N-diethylaminoethyl) methylphosphonothiolate, nerve agent markers, in water samples using strong anion-exchange disk extraction, in vial trimethylsilylation, and gas chromatography-mass spectrometry analysis.
    Subramaniam R; Åstot C; Juhlin L; Nilsson C; Östin A
    J Chromatogr A; 2012 Mar; 1229():86-94. PubMed ID: 22326187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficiency of pretreatment of aqueous samples using a macroporous strong anion-exchange resin on the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry after tert.-butyldimethylsilylation.
    Kataoka M; Tsuge K; Seto Y
    J Chromatogr A; 2000 Sep; 891(2):295-304. PubMed ID: 11043790
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release of protein-bound nerve agents by excess fluoride from whole blood: GC-MS/MS method development, validation, and application to a real-life denatured blood sample.
    Koller M; Thiermann H; Worek F; Wille T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122693. PubMed ID: 34171608
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of sarin and cyclosarin metabolites isopropyl methylphosphonic acid and cyclohexyl methylphosphonic acid in minipig plasma using isotope-dilution and liquid chromatography- time-of-flight mass spectrometry.
    Evans RA; Jakubowski EM; Muse WT; Matson K; Hulet SW; Mioduszewski RJ; Thomson SA; Totura AL; Renner JA; Crouse CL
    J Anal Toxicol; 2008; 32(1):78-85. PubMed ID: 18269798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In-line respeciation: an ion-exchange ion chromatographic method applied to the separation of degradation products of chemical warfare nerve agents in soil.
    Vermillion WD; Crenshaw MD
    J Chromatogr A; 1997 May; 770(1-2):253-60. PubMed ID: 9203365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Method for the analysis of the methylphosphonic acid metabolites of sarin and its ethanol-substituted analogue in urine as applied to the victims of the Tokyo sarin disaster.
    Minami M; Hui DM; Katsumata M; Inagaki H; Boulet CA
    J Chromatogr B Biomed Sci Appl; 1997 Aug; 695(2):237-44. PubMed ID: 9300859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.