These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Group-walk: a rigorous approach to group-wise false discovery rate analysis by target-decoy competition. Freestone J; Short T; Noble WS; Keich U Bioinformatics; 2022 Sep; 38(Suppl_2):ii82-ii88. PubMed ID: 36124786 [TBL] [Abstract][Full Text] [Related]
4. Improving Peptide-Level Mass Spectrometry Analysis via Double Competition. Lin A; Short T; Noble WS; Keich U J Proteome Res; 2022 Oct; 21(10):2412-2420. PubMed ID: 36166314 [TBL] [Abstract][Full Text] [Related]
5. Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy? Keich U; Noble WS Res Comput Mol Biol; 2017 May; 10229():99-116. PubMed ID: 29326989 [TBL] [Abstract][Full Text] [Related]
6. Unbiased False Discovery Rate Estimation for Shotgun Proteomics Based on the Target-Decoy Approach. Levitsky LI; Ivanov MV; Lobas AA; Gorshkov MV J Proteome Res; 2017 Feb; 16(2):393-397. PubMed ID: 27959540 [TBL] [Abstract][Full Text] [Related]
7. Target-decoy false discovery rate estimation using Crema. Lin A; See D; Fondrie WE; Keich U; Noble WS Proteomics; 2024 Apr; 24(8):e2300084. PubMed ID: 38380501 [TBL] [Abstract][Full Text] [Related]
8. MULTILAYER KNOCKOFF FILTER: CONTROLLED VARIABLE SELECTION AT MULTIPLE RESOLUTIONS. Katsevich E; Sabatti C Ann Appl Stat; 2019 Mar; 13(1):1-33. PubMed ID: 31687060 [TBL] [Abstract][Full Text] [Related]
9. Estimation of false discovery proportion under general dependence. Pawitan Y; Calza S; Ploner A Bioinformatics; 2006 Dec; 22(24):3025-31. PubMed ID: 17046978 [TBL] [Abstract][Full Text] [Related]
11. RANK: Large-Scale Inference with Graphical Nonlinear Knockoffs. Fan Y; Demirkaya E; Li G; Lv J J Am Stat Assoc; 2020; 115(529):362-379. PubMed ID: 32742045 [TBL] [Abstract][Full Text] [Related]
12. Decoy methods for assessing false positives and false discovery rates in shotgun proteomics. Wang G; Wu WW; Zhang Z; Masilamani S; Shen RF Anal Chem; 2009 Jan; 81(1):146-59. PubMed ID: 19061407 [TBL] [Abstract][Full Text] [Related]
13. Local false discovery rate estimation with competition-based procedures for variable selection. Sun X; Fu Y Stat Med; 2024 Jan; 43(1):61-88. PubMed ID: 37927105 [TBL] [Abstract][Full Text] [Related]
14. Unveiling the Links Between Peptide Identification and Differential Analysis FDR Controls by Means of a Practical Introduction to Knockoff Filters. Etourneau L; Varoquaux N; Burger T Methods Mol Biol; 2023; 2426():1-24. PubMed ID: 36308682 [TBL] [Abstract][Full Text] [Related]
16. An investigation of two multivariate permutation methods for controlling the false discovery proportion. Korn EL; Li MC; McShane LM; Simon R Stat Med; 2007 Oct; 26(24):4428-40. PubMed ID: 17357994 [TBL] [Abstract][Full Text] [Related]
17. Controlling false discovery proportion in identification of drug-related adverse events from multiple system organ classes. Tan X; Liu GF; Zeng D; Wang W; Diao G; Heyse JF; Ibrahim JG Stat Med; 2019 Sep; 38(22):4378-4389. PubMed ID: 31313376 [TBL] [Abstract][Full Text] [Related]
18. IPAD: Stable Interpretable Forecasting with Knockoffs Inference. Fan Y; Lv J; Sharifvaghefi M; Uematsu Y J Am Stat Assoc; 2020; 115(532):1822-1834. PubMed ID: 33716359 [TBL] [Abstract][Full Text] [Related]
19. Exact Integral Formulas for False Discovery Rate and the Variance of False Discovery Proportion. Sadygov RG; Zhu JX; Deberneh HM J Proteome Res; 2024 Jun; 23(6):2298-2305. PubMed ID: 38809146 [TBL] [Abstract][Full Text] [Related]
20. Knockoff boosted tree for model-free variable selection. Jiang T; Li Y; Motsinger-Reif AA Bioinformatics; 2021 May; 37(7):976-983. PubMed ID: 32966559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]