These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 3665229)
1. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs. Skirving AP; Day R; Macdonald W; McLaren R Clin Orthop Relat Res; 1987 Nov; (224):117-24. PubMed ID: 3665229 [TBL] [Abstract][Full Text] [Related]
2. The influence of different degrees of stiffness of fixation plates on experimental bone healing. Terjesen T; Apalset K J Orthop Res; 1988; 6(2):293-9. PubMed ID: 3343634 [TBL] [Abstract][Full Text] [Related]
3. Influence of plate design on cortical bone perfusion and fracture healing in canine segmental tibial fractures. Jain R; Podworny N; Hupel TM; Weinberg J; Schemitsch EH J Orthop Trauma; 1999; 13(3):178-86. PubMed ID: 10206249 [TBL] [Abstract][Full Text] [Related]
4. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture. Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950 [TBL] [Abstract][Full Text] [Related]
5. Corrosive effect of carbon-fibre reinforced plastic on stainless-steel screws during implantation into man. Tayton K J Med Eng Technol; 1983; 7(1):24-6. PubMed ID: 6842566 [TBL] [Abstract][Full Text] [Related]
6. [Ultrastructural investigation of experimental fracture healing: effect of fixation with plates of various materials]. Qiu SJ Zhonghua Wai Ke Za Zhi; 1990 Feb; 28(2):88-91, 126. PubMed ID: 2364831 [TBL] [Abstract][Full Text] [Related]
7. An in vitro biomechanical investigation of the mechanical properties of dynamic compression plated osteotomized adult equine tibiae. McDuffee LA; Stover SM; Taylor KT Vet Surg; 1997; 26(2):126-36. PubMed ID: 9068163 [TBL] [Abstract][Full Text] [Related]
8. Dynamic Stabilization of Simple Fractures With Active Plates Delivers Stronger Healing Than Conventional Compression Plating. Bottlang M; Tsai S; Bliven EK; von Rechenberg B; Kindt P; Augat P; Henschel J; Fitzpatrick DC; Madey SM J Orthop Trauma; 2017 Feb; 31(2):71-77. PubMed ID: 27861456 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of callus formation in distal femur fractures after carbon fiber composite versus stainless steel plate fixation. Byun SE; Vintimilla DR; Bedeir YH; Dean CS; Parry JA; Hak DJ; Mauffrey C Eur J Orthop Surg Traumatol; 2020 Aug; 30(6):1103-1107. PubMed ID: 32356122 [TBL] [Abstract][Full Text] [Related]
10. [Experimental study on carbon fiber reinforced plastic plate--analysis of stabilizing force required for plate]. Iizuka H Nihon Seikeigeka Gakkai Zasshi; 1990 Nov; 64(11):1092-104. PubMed ID: 2273322 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the effect of reamed and unreamed locked intramedullary nailing on blood flow in the callus and strength of union following fracture of the sheep tibia. Schemitsch EH; Kowalski MJ; Swiontkowski MF; Harrington RM J Orthop Res; 1995 May; 13(3):382-9. PubMed ID: 7602400 [TBL] [Abstract][Full Text] [Related]
12. Biomechanical compatibility of high strength nickel free stainless steel bone plate under lightweight design. Ren Y; Zhao H; Yang K; Zhang Y Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():415-422. PubMed ID: 31029335 [TBL] [Abstract][Full Text] [Related]
13. Callus formation and fixation rigidity: a fracture model in rats. Probst A; Jansen H; Ladas A; Spiegel HU J Orthop Res; 1999 Mar; 17(2):256-60. PubMed ID: 10221843 [TBL] [Abstract][Full Text] [Related]
14. [Experimental studies on "less rigid" polyacetal plates for fracture fixation (author's transl)]. Kusunose K Nihon Seikeigeka Gakkai Zasshi; 1982 May; 56(5):399-414. PubMed ID: 7108319 [TBL] [Abstract][Full Text] [Related]
15. X-ray diagnosis of healing fractures in rabbits. Nicholls PJ; Berg E; Bliven FE; Kling JM Clin Orthop Relat Res; 1979; (142):234-6. PubMed ID: 498640 [TBL] [Abstract][Full Text] [Related]
16. Effects of Bone-Plate Material on the Predicted Stresses in the Tibial Shaft Comminuted Fractures: A Finite Element Analysis. Zhou K; Yang H J Invest Surg; 2022 Jan; 35(1):132-140. PubMed ID: 33089722 [TBL] [Abstract][Full Text] [Related]
17. Plate fixation of tibial fractures in the rabbit. Correlation of bone strength with duration of fixation. Terjesen T Acta Orthop Scand; 1984 Aug; 55(4):452-6. PubMed ID: 6475513 [TBL] [Abstract][Full Text] [Related]
18. A standardized experimental fracture in the mouse tibia. Hiltunen A; Vuorio E; Aro HT J Orthop Res; 1993 Mar; 11(2):305-12. PubMed ID: 8483044 [TBL] [Abstract][Full Text] [Related]
19. In vivo biomechanical evaluation of a novel angle-stable interlocking nail design in a canine tibial fracture model. Déjardin LM; Cabassu JB; Guillou RP; Villwock M; Guiot LP; Haut RC Vet Surg; 2014 Mar; 43(3):271-81. PubMed ID: 24467692 [TBL] [Abstract][Full Text] [Related]
20. In vivo axial dynamization of canine tibial fractures using the Securos external skeletal fixation system. Gorman SC; Kraus KH; Keating JH; Tidwell AS; Rand WM; Parkington JD; Boudrieau RJ Vet Comp Orthop Traumatol; 2005; 18(4):199-207. PubMed ID: 16594387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]