These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 36652445)
1. Anthropogenic impacts on tidal creek sedimentation since 1900. Bost MC; Deaton CD; Rodriguez AB; McKee BA; Fodrie FJ; Miller CB PLoS One; 2023; 18(1):e0280490. PubMed ID: 36652445 [TBL] [Abstract][Full Text] [Related]
2. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: II. Distribution of organic contaminants. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):458-71. PubMed ID: 10508893 [TBL] [Abstract][Full Text] [Related]
3. Tidal creek and salt marsh sediments in South Carolina coastal estuaries: I. Distribution of trace metals. Sanger DM; Holland AF; Scott GI Arch Environ Contam Toxicol; 1999 Nov; 37(4):445-57. PubMed ID: 10508892 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the impacts of dock structures and land use on tidal creek ecosystems in South Carolina estuarine environments. Sanger DM; Holland AF; Hernandez DL Environ Manage; 2004 Mar; 33(3):385-400. PubMed ID: 15031758 [TBL] [Abstract][Full Text] [Related]
5. Impacts of Coastal Development on the Ecology of Tidal Creek Ecosystems of the US Southeast including Consequences to Humans. Sanger D; Blair A; DiDonato G; Washburn T; Jones S; Riekerk G; Wirth E; Stewart J; White D; Vandiver L; Holland AF Estuaries Coast; 2015 Jan; 38(Suppl 1):49-66. PubMed ID: 31354396 [TBL] [Abstract][Full Text] [Related]
6. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone. Van Dolah RF; Riekerk GH; Bergquist DC; Felber J; Chestnut DE; Holland AF Sci Total Environ; 2008 Feb; 390(1):142-54. PubMed ID: 17997472 [TBL] [Abstract][Full Text] [Related]
7. Study on spatio-temporal variation and hydrological connectivity of tidal creek evolution in Yancheng coastal wetlands. Zhou S; Wang C; Li Y; Huang W; Jia Y; Wang Y; Xu W; Qiu C; Liu H Environ Sci Pollut Res Int; 2023 Mar; 30(13):37143-37156. PubMed ID: 36571689 [TBL] [Abstract][Full Text] [Related]
8. An Assessment of Southeast United States Headwater Tidal Creek Sediment Contamination Over a Twenty-Year Period in Relation to Coastal Development. Parker C; Sanger D; Wirth E Environ Manage; 2023 Nov; 72(5):883-901. PubMed ID: 37277653 [TBL] [Abstract][Full Text] [Related]
9. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Washburn T; Sanger D Environ Monit Assess; 2011 Sep; 180(1-4):177-88. PubMed ID: 21125422 [TBL] [Abstract][Full Text] [Related]
10. Polycyclic aromatic hydrocarbon contamination in South Carolina salt marsh-tidal creek systems: relationships among sediments, biota, and watershed land use. Garner TR; Weinstein JE; Sanger DM Arch Environ Contam Toxicol; 2009 Jul; 57(1):103-15. PubMed ID: 18998042 [TBL] [Abstract][Full Text] [Related]
11. Challenges and opportunities for sustaining coastal wetlands and oyster reefs in the southeastern United States. Kyzar T; Safak I; Cebrian J; Clark MW; Dix N; Dietz K; Gittman RK; Jaeger J; Radabaugh KR; Roddenberry A; Smith CS; Sparks EL; Stone B; Sundin G; Taubler M; Angelini C J Environ Manage; 2021 Oct; 296():113178. PubMed ID: 34225043 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of suspended sediment exchange and transport in a degraded mangrove creek in Kenya. Kitheka JU; Ongwenyi GS; Mavuti KM Ambio; 2002 Dec; 31(7-8):580-7. PubMed ID: 12572826 [TBL] [Abstract][Full Text] [Related]
13. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Gong Z; Mou K; Wang Q; Qiu H; Zhang C; Zhou D Sci Total Environ; 2021 May; 769():144572. PubMed ID: 33482556 [TBL] [Abstract][Full Text] [Related]
14. Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise. Alizad K; Hagen SC; Medeiros SC; Bilskie MV; Morris JT; Balthis L; Buckel CA PLoS One; 2018; 13(10):e0205176. PubMed ID: 30312304 [TBL] [Abstract][Full Text] [Related]
15. The size and distribution of tidal creeks affects salt marsh restoration. Wu Y; Liu J; Yan G; Zhai J; Cong L; Dai L; Zhang Z; Zhang M J Environ Manage; 2020 Apr; 259():110070. PubMed ID: 31929037 [TBL] [Abstract][Full Text] [Related]
16. Seagrass sediments reveal the long-term deterioration of an estuarine ecosystem. Serrano O; Lavery P; Masque P; Inostroza K; Bongiovanni J; Duarte C Glob Chang Biol; 2016 Apr; 22(4):1523-31. PubMed ID: 26818637 [TBL] [Abstract][Full Text] [Related]
17. Temporal and spatial relationships between watershed land use and salt marsh disturbance in a pacific estuary. Byrd KB; Kelly NM; Merenlender AM Environ Manage; 2007 Jan; 39(1):98-112. PubMed ID: 17106797 [TBL] [Abstract][Full Text] [Related]
18. Watershed sediment cannot offset sea level rise in most US tidal wetlands. Ensign SH; Halls JN; Peck EK Science; 2023 Dec; 382(6675):1191-1195. PubMed ID: 38060655 [TBL] [Abstract][Full Text] [Related]
19. Relationship between land use classification and grass shrimp Palaemonetes spp. population metrics in coastal watersheds. Daugomah JW; Key PB; West JB; Shea NR; McDaniel S; Pennington PL; Fulton MH Environ Monit Assess; 2014 Jun; 186(6):3445-53. PubMed ID: 24464399 [TBL] [Abstract][Full Text] [Related]
20. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]