These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 36652470)

  • 21. Structural insights into a maleylpyruvate hydrolase from sphingobium sp. SYK-6, a bacterium degrading lignin-derived aryls.
    Hong H; Seo H; Kim KJ
    Biochem Biophys Res Commun; 2019 Jun; 514(3):765-771. PubMed ID: 31079929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Database Mining for Novel Bacterial β-Etherases, Glutathione-Dependent Lignin-Degrading Enzymes.
    Voß H; Heck CA; Schallmey M; Schallmey A
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate.
    Granja-Travez RS; Wilkinson RC; Persinoti GF; Squina FM; Fülöp V; Bugg TDH
    FEBS J; 2018 May; 285(9):1684-1700. PubMed ID: 29575798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developing Rhodococcus opacus and Sphingobium sp. coculture systems for valorization of lignin-derived dimers.
    Cai C; Xu Z; Li J; Zhou H; Jin M
    Biotechnol Bioeng; 2022 Nov; 119(11):3162-3177. PubMed ID: 36030484
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers.
    Ohta Y; Nishi S; Hasegawa R; Hatada Y
    Sci Rep; 2015 Oct; 5():15105. PubMed ID: 26477321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The bacterial
    Kuatsjah E; Chan ACK; Kobylarz MJ; Murphy MEP; Eltis LD
    J Biol Chem; 2017 Nov; 292(44):18290-18302. PubMed ID: 28935670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds.
    Masai E; Katayama Y; Fukuda M
    Biosci Biotechnol Biochem; 2007 Jan; 71(1):1-15. PubMed ID: 17213657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid, Parallel Identification of Catabolism Pathways of Lignin-Derived Aromatic Compounds in Novosphingobium aromaticivorans.
    Cecil JH; Garcia DC; Giannone RJ; Michener JK
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30217841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of two glutathione S-transferases in the final step of the β-aryl ether cleavage pathway in Sphingobium sp. strain SYK-6.
    Higuchi Y; Sato D; Kamimura N; Masai E
    Sci Rep; 2020 Nov; 10(1):20614. PubMed ID: 33244017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiplexed fitness profiling by RB-TnSeq elucidates pathways for lignin-related aromatic catabolism in Sphingobium sp. SYK-6.
    Bleem A; Kato R; Kellermyer ZA; Katahira R; Miyamoto M; Niinuma K; Kamimura N; Masai E; Beckham GT
    Cell Rep; 2023 Aug; 42(8):112847. PubMed ID: 37515767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial Catabolism of β-Hydroxypropiovanillone and β-Hydroxypropiosyringone Produced in the Reductive Cleavage of Arylglycerol-β-Aryl Ether in Lignin.
    Higuchi Y; Aoki S; Takenami H; Kamimura N; Takahashi K; Hishiyama S; Lancefield CS; Ojo OS; Katayama Y; Westwood NJ; Masai E
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374031
    [No Abstract]   [Full Text] [Related]  

  • 32. A heterodimeric glutathione
    Kontur WS; Olmsted CN; Yusko LM; Niles AV; Walters KA; Beebe ET; Vander Meulen KA; Karlen SD; Gall DL; Noguera DR; Donohue TJ
    J Biol Chem; 2019 Feb; 294(6):1877-1890. PubMed ID: 30541921
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whole-cell cascade for the preparation of enantiopure β-O-4 aryl ether compounds with glutathione recycling.
    Husarcikova J; Schallmey A
    J Biotechnol; 2019 Mar; 293():1-7. PubMed ID: 30703467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction of chemically labile substructures into Arabidopsis lignin through the use of LigD, the Cα-dehydrogenase from Sphingobium sp. strain SYK-6.
    Tsuji Y; Vanholme R; Tobimatsu Y; Ishikawa Y; Foster CE; Kamimura N; Hishiyama S; Hashimoto S; Shino A; Hara H; Sato-Izawa K; Oyarce P; Goeminne G; Morreel K; Kikuchi J; Takano T; Fukuda M; Katayama Y; Boerjan W; Ralph J; Masai E; Kajita S
    Plant Biotechnol J; 2015 Aug; 13(6):821-32. PubMed ID: 25580543
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-step biocatalytic depolymerization of lignin.
    Picart P; Liu H; Grande PM; Anders N; Zhu L; Klankermayer J; Leitner W; Domínguez de María P; Schwaneberg U; Schallmey A
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6277-6287. PubMed ID: 28634851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Laccase-Lig Multienzymatic Multistep System in Lignin Valorization.
    Vignali E; Gigli M; Cailotto S; Pollegioni L; Rosini E; Crestini C
    ChemSusChem; 2022 Oct; 15(20):e202201147. PubMed ID: 35917230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catabolic System of 5-Formylferulic Acid, a Downstream Metabolite of a β-5-Type Lignin-Derived Dimer, in
    Kawazoe M; Takahashi K; Tokue Y; Hishiyama S; Seki H; Higuchi Y; Kamimura N; Masai E
    J Agric Food Chem; 2023 Dec; 71(49):19663-19671. PubMed ID: 38038961
    [No Abstract]   [Full Text] [Related]  

  • 38. Iron acquisition system of Sphingobium sp. strain SYK-6, a degrader of lignin-derived aromatic compounds.
    Fujita M; Sakumoto T; Tanatani K; Yu H; Mori K; Kamimura N; Masai E
    Sci Rep; 2020 Jul; 10(1):12177. PubMed ID: 32699224
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate Distortion and the Catalytic Reaction Mechanism of 5-Carboxyvanillate Decarboxylase.
    Vladimirova A; Patskovsky Y; Fedorov AA; Bonanno JB; Fedorov EV; Toro R; Hillerich B; Seidel RD; Richards NG; Almo SC; Raushel FM
    J Am Chem Soc; 2016 Jan; 138(3):826-36. PubMed ID: 26714575
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of an extradiol dioxygenase involved in the catabolism of lignin-derived biphenyl.
    Kuatsjah E; Chen HM; Withers SG; Eltis LD
    FEBS Lett; 2017 Apr; 591(7):1001-1009. PubMed ID: 28247503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.