These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 36652496)

  • 1. End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins.
    Cai T; Xie L; Zhang S; Chen M; He D; Badkul A; Liu Y; Namballa HK; Dorogan M; Harding WW; Mura C; Bourne PE; Xie L
    PLoS Comput Biol; 2023 Jan; 19(1):e1010851. PubMed ID: 36652496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of Dark Chemical Genomics Space via Portal Learning: Applied to Targeting the Undruggable Genome and COVID-19 Anti-Infective Polypharmacology.
    Cai T; Xie L; Chen M; Liu Y; He D; Zhang S; Mura C; Bourne PE; Xie L
    Res Sq; 2021 Dec; ():. PubMed ID: 34873596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MSA-Regularized Protein Sequence Transformer toward Predicting Genome-Wide Chemical-Protein Interactions: Application to GPCRome Deorphanization.
    Cai T; Lim H; Abbu KA; Qiu Y; Nussinov R; Xie L
    J Chem Inf Model; 2021 Apr; 61(4):1570-1582. PubMed ID: 33757283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model Agnostic Semi-Supervised Meta-Learning Elucidates Understudied Out-of-distribution Molecular Interactions.
    Wu Y; Xie L; Liu Y; Xie L
    bioRxiv; 2024 Mar; ():. PubMed ID: 37292680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of Protein-Ligand Binding Sites by Sequence Information and Ensemble Classifier.
    Ding Y; Tang J; Guo F
    J Chem Inf Model; 2017 Dec; 57(12):3149-3161. PubMed ID: 29125297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function.
    Wang Z; Zheng L; Wang S; Lin M; Wang Z; Kong AW; Mu Y; Wei Y; Li W
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36502369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AI-based prediction of new binding site and virtual screening for the discovery of novel P2X3 receptor antagonists.
    Kang KM; Lee I; Nam H; Kim YC
    Eur J Med Chem; 2022 Oct; 240():114556. PubMed ID: 35849939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Sequence-Based Dynamic Ensemble Learning System for Protein Ligand-Binding Site Prediction.
    Chen P; Hu S; Zhang J; Gao X; Li J; Xia J; Wang B
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):901-912. PubMed ID: 26661785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening.
    Nagamine N; Shirakawa T; Minato Y; Torii K; Kobayashi H; Imoto M; Sakakibara Y
    PLoS Comput Biol; 2009 Jun; 5(6):e1000397. PubMed ID: 19503826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.
    Lim H; He D; Qiu Y; Krawczuk P; Sun X; Xie L
    PLoS Comput Biol; 2019 Jun; 15(6):e1006619. PubMed ID: 31206508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KSFinder-a knowledge graph model for link prediction of novel phosphorylated substrates of kinases.
    Anandakrishnan M; Ross KE; Chen C; Shanker V; Cowart J; Wu CH
    PeerJ; 2023; 11():e16164. PubMed ID: 37818330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein-ligand interactions from paired protein sequence motifs and ligand substructures.
    Greenside P; Hillenmeyer M; Kundaje A
    Pac Symp Biocomput; 2018; 23():20-31. PubMed ID: 29218866
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.