BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36652689)

  • 1. Membrane bending and sphingomyelinase-associated, sulfatide-dependent hypoxic adhesion of sickle mature erythrocytes.
    Goreke U; Kucukal E; Wang F; An R; Arnold N; Quinn E; Yuan C; Bode A; Hill A; Man Y; Hambley BC; Schilz R; Ginwalla M; Little JA; Gurkan UA
    Blood Adv; 2023 May; 7(10):2094-2104. PubMed ID: 36652689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erythrocyte membrane sulfatide plays a crucial role in the adhesion of sickle erythrocytes to endothelium.
    Zhou Z; Thiagarajan P; Udden M; Lòpez JA; Guchhait P
    Thromb Haemost; 2011 Jun; 105(6):1046-52. PubMed ID: 21437360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous polymerization and adhesion under hypoxia in sickle cell disease.
    Papageorgiou DP; Abidi SZ; Chang HY; Li X; Kato GJ; Karniadakis GE; Suresh S; Dao M
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9473-9478. PubMed ID: 30190429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease.
    Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ
    Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin s polymerization and red cell membrane changes.
    Kuypers FA
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):155-79. PubMed ID: 24589260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease.
    Alapan Y; Kim C; Adhikari A; Gray KE; Gurkan-Cavusoglu E; Little JA; Gurkan UA
    Transl Res; 2016 Jul; 173():74-91.e8. PubMed ID: 27063958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
    Dinkla S; Wessels K; Verdurmen WP; Tomelleri C; Cluitmans JC; Fransen J; Fuchs B; Schiller J; Joosten I; Brock R; Bosman GJ
    Cell Death Dis; 2012 Oct; 3(10):e410. PubMed ID: 23076218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased hemoglobin affinity for oxygen with GBT1118 improves hypoxia tolerance in sickle cell mice.
    Dufu K; Williams AT; Muller CR; Walser CM; Lucas A; Eaker AM; Alt C; Cathers BE; Oksenberg D; Cabrales P
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H400-H411. PubMed ID: 34213392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular polymerization of sickle hemoglobin: disease severity and therapeutic goals.
    Noguchi CT; Rodgers GP; Schechter AN
    Prog Clin Biol Res; 1987; 240():381-91. PubMed ID: 3615501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide association study of erythrocyte density in sickle cell disease patients.
    Ilboudo Y; Bartolucci P; Rivera A; Sedzro JC; Beaudoin M; Trudel M; Alper SL; Brugnara C; Galactéros F; Lettre G
    Blood Cells Mol Dis; 2017 Jun; 65():60-65. PubMed ID: 28552477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TSH Receptor Reduces Hemoglobin S Polymerization and Increases Deformability and Adhesion of Sickle Erythrocytes.
    Mendonça-Reis E; Guimarães-Nobre CC; Teixeira-Alves LR; Miranda-Alves L; Berto-Junior C
    Anemia; 2024; 2024():7924015. PubMed ID: 38596654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation.
    Dong C; Chadwick RS; Schechter AN
    Biophys J; 1992 Sep; 63(3):774-83. PubMed ID: 1420913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionophore-mediated swelling of erythrocytes as a therapeutic mechanism in sickle cell disease.
    Geisness AC; Azul M; Williams D; Szafraniec H; De Souza DC; Higgins JM; Wood DK
    Haematologica; 2022 Jun; 107(6):1438-1447. PubMed ID: 34706495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitapivat increases ATP and decreases oxidative stress and erythrocyte mitochondria retention in a SCD mouse model.
    Quezado ZMN; Kamimura S; Smith M; Wang X; Heaven MR; Jana S; Vogel S; Zerfas P; Combs CA; Almeida LEF; Li Q; Quezado M; Horkayne-Szakaly I; Kosinski PA; Yu S; Kapadnis U; Kung C; Dang L; Wakim P; Eaton WA; Alayash AI; Thein SL
    Blood Cells Mol Dis; 2022 Jul; 95():102660. PubMed ID: 35366607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion.
    Setty BN; Kulkarni S; Stuart MJ
    Blood; 2002 Mar; 99(5):1564-71. PubMed ID: 11861269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Established and experimental treatments for sickle cell disease.
    De Franceschi L; Corrocher R
    Haematologica; 2004 Mar; 89(3):348-56. PubMed ID: 15020275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine signaling in normal and sickle erythrocytes and beyond.
    Zhang Y; Xia Y
    Microbes Infect; 2012 Aug; 14(10):863-73. PubMed ID: 22634345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disrupting the vicious cycle created by NOX activation in sickle erythrocytes exposed to hypoxia/reoxygenation prevents adhesion and vasoocclusion.
    MacKinney A; Woska E; Spasojevic I; Batinic-Haberle I; Zennadi R
    Redox Biol; 2019 Jul; 25():101097. PubMed ID: 30661992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.
    Sun K; Zhang Y; Bogdanov MV; Wu H; Song A; Li J; Dowhan W; Idowu M; Juneja HS; Molina JG; Blackburn MR; Kellems RE; Xia Y
    Blood; 2015 Mar; 125(10):1643-52. PubMed ID: 25587035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Red Blood Cell-Inflammation Vicious Circle in Sickle Cell Disease.
    Nader E; Romana M; Connes P
    Front Immunol; 2020; 11():454. PubMed ID: 32231672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.