These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36652794)

  • 21. New Derivatization Reagent for Detection of free Thiol-groups in Metabolites and Proteins in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging.
    Fülöp A; Bausbacher T; Rizzo S; Zhou Q; Gillandt H; Hopf C; Rittner M
    Anal Chem; 2020 May; 92(9):6224-6228. PubMed ID: 32233426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cysteine residues as catalysts for covalent peptide and protein modification: a role for thiyl radicals?
    Schöneich C
    Biochem Soc Trans; 2011 Oct; 39(5):1254-9. PubMed ID: 21936798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions.
    Jackson PA; Widen JC; Harki DA; Brummond KM
    J Med Chem; 2017 Feb; 60(3):839-885. PubMed ID: 27996267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of acrylamide in food samples by capillary zone electrophoresis.
    Bermudo E; Núñez O; Puignou L; Galceran MT
    J Chromatogr A; 2006 Jul; 1120(1-2):199-204. PubMed ID: 16310205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical modifications of peptide sequences via S-alkylation reaction.
    Calce E; Leone M; Monfregola L; De Luca S
    Org Lett; 2013 Oct; 15(20):5354-7. PubMed ID: 24090306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Model reactions of acrylamide with selected amino compounds.
    Zamora R; Delgado RM; Hidalgo FJ
    J Agric Food Chem; 2010 Feb; 58(3):1708-13. PubMed ID: 20078067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteinoyl- and cysteine-containing dipeptidoylbenzotriazoles with free sulfhydryl groups: easy access to N-terminal and internal cysteine peptides.
    Ibrahim TS; Tala SR; El-Feky SA; Abdel-Samii ZK; Katritzky AR
    Chem Biol Drug Des; 2012 Aug; 80(2):194-202. PubMed ID: 22177655
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction.
    Jeng MF; Holmgren A; Dyson HJ
    Biochemistry; 1995 Aug; 34(32):10101-5. PubMed ID: 7640264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups.
    Dinkova-Kostova AT; Massiah MA; Bozak RE; Hicks RJ; Talalay P
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3404-9. PubMed ID: 11248091
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of reaction conditions on the Diels-Alder cycloadditions of 2-thio-3-chloroacrylamides; investigation of thermal, catalytic and microwave conditions.
    Kissane M; Lynch D; Chopra J; Lawrence SE; Maguire AR
    Org Biomol Chem; 2010 Dec; 8(24):5602-13. PubMed ID: 20927479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence-defined polymers via orthogonal allyl acrylamide building blocks.
    Porel M; Alabi CA
    J Am Chem Soc; 2014 Sep; 136(38):13162-5. PubMed ID: 25204618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intra-molecular reactions as a new approach to investigate bio-radical reactivity: a case study of cysteine sulfinyl radicals.
    Durand KL; Ma X; Xia Y
    Analyst; 2014 Mar; 139(6):1327-30. PubMed ID: 24511586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of thiols and disulfides on protein stability.
    Trivedi MV; Laurence JS; Siahaan TJ
    Curr Protein Pept Sci; 2009 Dec; 10(6):614-25. PubMed ID: 19538140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced bismuth digestive absorption in rats by some sulfhydryl compounds: nmr study of complexes formed.
    Chaleil D; Lefevre F; Allain P; Martin GJ
    J Inorg Biochem; 1981 Nov; 15(3):213-21. PubMed ID: 7310401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass Spectrometry-Based Method for Detection and Identification of Free Thiol Groups in Proteins.
    Solecka-Witulska BA; Weise C; Kannicht C
    Methods Mol Biol; 2019; 1934():179-189. PubMed ID: 31256380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enantioselective Rauhut-Currier reactions promoted by protected cysteine.
    Aroyan CE; Miller SJ
    J Am Chem Soc; 2007 Jan; 129(2):256-7. PubMed ID: 17212388
    [No Abstract]   [Full Text] [Related]  

  • 37. On-resin synthesis of cyclic peptides via tandem N-to-S acyl migration and intramolecular thiol additive-free native chemical ligation.
    Serra G; Posada L; Hojo H
    Chem Commun (Camb); 2020 Jan; 56(6):956-959. PubMed ID: 31858094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton and non-proton activation of ASIC channels.
    Gautschi I; van Bemmelen MX; Schild L
    PLoS One; 2017; 12(4):e0175293. PubMed ID: 28384246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of acrylamide formation/elimination reactions as affected by water activity.
    De Vleeschouwer K; Van der Plancken I; Van Loey A; Hendrickx ME
    Biotechnol Prog; 2007; 23(3):722-8. PubMed ID: 17503764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ATP synthase from a cyanobacterial Synechocystis 6803 mutant containing the regulatory segment of the chloroplast gamma subunit shows thiol modulation.
    Krenn BE; Aardewijn P; Van Walraven HS; Werner-Grüne S; Strotmann H; Kraayenhof R
    Biochem Soc Trans; 1995 Nov; 23(4):757-60. PubMed ID: 8654832
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.