These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36652794)

  • 41. Beta-lactams or gamma-lactams by 4-exo-trig or 5-endo-trig anionic cyclisation of lithiated acrylamide derivatives.
    Clayden J; Watson DW; Helliwell M; Chambers M
    Chem Commun (Camb); 2003 Oct; (20):2582-3. PubMed ID: 14594291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol-ene Michael addition.
    Hu Q; Fu Y; Xu X; Qiao Z; Wang R; Zhang Y; Li Y
    Analyst; 2016 Feb; 141(3):1136-43. PubMed ID: 26699696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational state of ovalbumin at acidic pH as evaluated by a novel approach utilizing intrachain sulfhydryl-mixed disulfide exchange reactions.
    Tatsumi E; Yoshimatsu D; Hirose M
    Biochemistry; 1998 Sep; 37(35):12351-9. PubMed ID: 9724549
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Impact of rapeseed press-cake on Maillard reaction in a cookie model system.
    Troise AD; Wilkin JD; Fiore A
    Food Chem; 2018 Mar; 243():365-372. PubMed ID: 29146351
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Localization and quantitation of free sulfhydryl in recombinant monoclonal antibodies by differential labeling with 12C and 13C iodoacetic acid and LC-MS analysis.
    Xiang T; Chumsae C; Liu H
    Anal Chem; 2009 Oct; 81(19):8101-8. PubMed ID: 19722496
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Chemical Basis of Thiol Addition to Nitro-conjugated Linoleic Acid, a Protective Cell-signaling Lipid.
    Turell L; Vitturi DA; Coitiño EL; Lebrato L; Möller MN; Sagasti C; Salvatore SR; Woodcock SR; Alvarez B; Schopfer FJ
    J Biol Chem; 2017 Jan; 292(4):1145-1159. PubMed ID: 27923813
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanistic pathways of formation of acrylamide from different amino acids.
    Yaylayan VA; Locas CP; Wnorowski A; O'Brien J
    Adv Exp Med Biol; 2005; 561():191-203. PubMed ID: 16438299
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Raman spectra and sulfhydryl ionization constants of thioglycolic acid and cysteine.
    ELSON EL; EDSALL JT
    Biochemistry; 1962 Jan; 1():1-7. PubMed ID: 13890041
    [No Abstract]   [Full Text] [Related]  

  • 49. Synthesis and in vitro characterization of a preactivated thiolated acrylic acid/acrylamide-methylpropane sulfonic acid copolymer as a mucoadhesive sprayable polymer.
    Prüfert F; Hering U; Zaichik S; Le NN; Bernkop-Schnürch A
    Int J Pharm; 2020 Jun; 583():119371. PubMed ID: 32339632
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of plant polyphenols in acrylamide formation and elimination.
    Liu Y; Wang P; Chen F; Yuan Y; Zhu Y; Yan H; Hu X
    Food Chem; 2015 Nov; 186():46-53. PubMed ID: 25976790
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A turn-on upconversion fluorescence sensor for acrylamide in potato chips based on fluorescence resonance energy transfer and thiol-ene Michael addition.
    Rong Y; Ali S; Ouyang Q; Wang L; Wang B; Chen Q
    Food Chem; 2021 Jul; 351():129215. PubMed ID: 33639428
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conjugated imines and iminium salts as versatile acceptors of nucleophiles.
    Shimizu M; Hachiya I; Mizota I
    Chem Commun (Camb); 2009 Feb; (8):874-89. PubMed ID: 19214305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Conversion of 3-aminopropionamide and 3-alkylaminopropionamides into acrylamide in model systems.
    Zamora R; Delgado RM; Hidalgo FJ
    Mol Nutr Food Res; 2009 Dec; 53(12):1512-20. PubMed ID: 19746374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Preparation of surface modified protein nanoparticles by introduction of sulfhydryl groups.
    Weber C; Reiss S; Langer K
    Int J Pharm; 2000 Dec; 211(1-2):67-78. PubMed ID: 11137340
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of the Reactivity of Trapping Reagents toward Electrophiles: Cysteine Derivatives Can Be Bifunctional Trapping Reagents.
    Inoue K; Fukuda K; Yoshimura T; Kusano K
    Chem Res Toxicol; 2015 Aug; 28(8):1546-55. PubMed ID: 26172216
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient synthesis of cysteine-rich cyclic peptides through intramolecular native chemical ligation of N-Hnb-Cys peptide crypto-thioesters.
    Terrier VP; Delmas AF; Aucagne V
    Org Biomol Chem; 2017 Jan; 15(2):316-319. PubMed ID: 27910979
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Peptide/protein stapling and unstapling: introduction of s-tetrazine, photochemical release, and regeneration of the peptide/protein.
    Brown SP; Smith AB
    J Am Chem Soc; 2015 Apr; 137(12):4034-7. PubMed ID: 25793939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. beta-Lactoglobulin A with N-ethylmaleimide-modified sulfhydryl residue, polymerized through intermolecular disulfide bridge on heating in the presence of dithiothreitol.
    Wada R; Kitabatake N
    J Agric Food Chem; 2001 Oct; 49(10):4971-6. PubMed ID: 11600053
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.
    Tiwari A; Dhoble SJ; Kher RS
    Luminescence; 2015 Nov; 30(7):1148-52. PubMed ID: 25683960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solid-Phase S-Alkylation Promoted by Molecular Sieves.
    Calce E; Leone M; Mercurio FA; Monfregola L; De Luca S
    Org Lett; 2015 Nov; 17(22):5646-9. PubMed ID: 26523342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.