BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36652849)

  • 1. Relative quantification of phenolic compounds in exocarp-mesocarp and endocarp of sumac (Toxicodendron vernicifluum) combined with transcriptome analysis provides insights into glycosylation of flavonoids and biflavonoid biosynthesis.
    Han F; Zhang Q; Ding R; Wang J; Wu H; Zhao A
    Plant Physiol Biochem; 2023 Feb; 195():275-287. PubMed ID: 36652849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [De novo Assembly and Analysis of Sumac (Toxicodendron vernicifluum (Stokes) F.A. Barkley) Transcriptomes Provides Insights into the Biosynthesis of Urushiol].
    Bai GQ; Jia Y; Li WM; Chen H; Li B; Li SF
    Mol Biol (Mosk); 2018; 52(5):764-772. PubMed ID: 30363051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence.
    Dardick CD; Callahan AM; Chiozzotto R; Schaffer RJ; Piagnani MC; Scorza R
    BMC Biol; 2010 Feb; 8():13. PubMed ID: 20144217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HPLC-DAD-ESI-MS analysis of phenolic compounds during ripening in exocarp and mesocarp of tomato fruit.
    Carrillo-López A; Yahia E
    J Food Sci; 2013 Dec; 78(12):C1839-44. PubMed ID: 24171765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative metabolomic investigation in fruit sections of Citrus medica L. and Citrus maxima L. detecting potential bioactive metabolites using UHPLC-QTOF-IMS.
    Dadwal V; Joshi R; Gupta M
    Food Res Int; 2022 Jul; 157():111486. PubMed ID: 35761710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcripts profiling of fruit mesocarp and endocarp relevant to secondary metabolism by suppression subtractive hybridization in Azadirachta indica (neem).
    Narnoliya LK; Rajakani R; Sangwan NS; Gupta V; Sangwan RS
    Mol Biol Rep; 2014 May; 41(5):3147-62. PubMed ID: 24477588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequencing of
    Yuan X; Sun W; Zou X; Liu B; Huang W; Chen Z; Li Y; Qiu MY; Liu ZJ; Mao Y; Zou SQ
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30336592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of peach endocarp and mesocarp during early fruit development.
    Hu H; Liu Y; Shi GL; Liu YP; Wu RJ; Yang AZ; Wang YM; Hua BG; Wang YN
    Physiol Plant; 2011 Aug; 142(4):390-406. PubMed ID: 21496031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript assembly and quantification by RNA-Seq reveals differentially expressed genes between soft-endocarp and hard-endocarp hawthorns.
    Dai H; Han G; Yan Y; Zhang F; Liu Z; Li X; Li W; Ma Y; Li H; Liu Y; Zhang Z
    PLoS One; 2013; 8(9):e72910. PubMed ID: 24039819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traditional uses, phytochemistry, and pharmacology of Toxicodendron vernicifluum (Stokes) F.A. Barkley - A review.
    Li MC; Zhang YQ; Meng CW; Gao JG; Xie CJ; Liu JY; Xu YN
    J Ethnopharmacol; 2021 Mar; 267():113476. PubMed ID: 33075438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chromosome-level genome for
    Bai G; Chen C; Zhao C; Zhou T; Li D; Zhou T; Li W; Lu Y; Cong X; Jia Y; Li S
    iScience; 2022 Jul; 25(7):104512. PubMed ID: 35733792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peach Fruit Development: A Comparative Proteomic Study Between Endocarp and Mesocarp at Very Early Stages Underpins the Main Differential Biochemical Processes Between These Tissues.
    Rodriguez CE; Bustamante CA; Budde CO; Müller GL; Drincovich MF; Lara MV
    Front Plant Sci; 2019; 10():715. PubMed ID: 31214229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development.
    Gucci R; Lodolini EM; Rapoport HF
    Tree Physiol; 2009 Dec; 29(12):1575-85. PubMed ID: 19825868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive compounds analysis in ethanolic extracts of
    Zareiyan F; Khajehsharifi H
    Nat Prod Res; 2022 Sep; 36(17):4511-4514. PubMed ID: 34622727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolome and transcriptome analysis of flavor components and flavonoid biosynthesis in fig female flower tissues (Ficus carica L.) after bagging.
    Wang Z; Song M; Wang Z; Chen S; Ma H
    BMC Plant Biol; 2021 Aug; 21(1):396. PubMed ID: 34433422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative morphology and physiology of fruit and seed development in the two shrubs Rhus aromatica and R. glabra (Anacardiaceae).
    Li X; Baskin JM; Baskin CC
    Am J Bot; 1999 Sep; 86(9):1217-25. PubMed ID: 10487809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex-blending matrix solid-phase dispersion and UPLC-Q-TOF/MS were proposed to extract and examine the urushiols from Toxicodendron vernicifluum bark.
    Chen H; Zhou H; Qi Z; Xue X; Wang C
    J Pharm Biomed Anal; 2024 May; 242():116066. PubMed ID: 38417325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of cytotoxic and anti-inflammatory constituents from the bark of Toxicodendron vernicifluum (Stokes) F.A. Barkley.
    Kim KH; Moon E; Choi SU; Pang C; Kim SY; Lee KR
    J Ethnopharmacol; 2015 Mar; 162():231-7. PubMed ID: 25582488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in color-related compounds in tomato fruit exocarp and mesocarp during ripening using HPLC-APcI(+)-mass Spectrometry.
    Carrillo-López A; Yahia EM
    J Food Sci Technol; 2014 Oct; 51(10):2720-6. PubMed ID: 25328217
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.